Properties

Label 2-19110-1.1-c1-0-27
Degree $2$
Conductor $19110$
Sign $1$
Analytic cond. $152.594$
Root an. cond. $12.3528$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 8-s + 9-s + 10-s + 12-s + 13-s − 15-s + 16-s + 4·17-s − 18-s + 6·19-s − 20-s − 24-s + 25-s − 26-s + 27-s + 6·29-s + 30-s + 2·31-s − 32-s − 4·34-s + 36-s + 4·37-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s + 0.277·13-s − 0.258·15-s + 1/4·16-s + 0.970·17-s − 0.235·18-s + 1.37·19-s − 0.223·20-s − 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.192·27-s + 1.11·29-s + 0.182·30-s + 0.359·31-s − 0.176·32-s − 0.685·34-s + 1/6·36-s + 0.657·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(152.594\)
Root analytic conductor: \(12.3528\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19110,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.332268693\)
\(L(\frac12)\) \(\approx\) \(2.332268693\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.76590373037474, −15.34398417147601, −14.65482828210726, −14.05163547008752, −13.79299598771016, −12.86293940864128, −12.30469289938020, −11.91701558261291, −11.16072088498975, −10.72999397173804, −9.939806785173112, −9.561238178358686, −9.021619027851031, −8.241138077272861, −7.908569762731420, −7.360341002989877, −6.768149123038685, −5.938244978699768, −5.346783869414042, −4.417050551122865, −3.757295531641517, −2.970251830347377, −2.519222266765214, −1.292543823209795, −0.7918897227693301, 0.7918897227693301, 1.292543823209795, 2.519222266765214, 2.970251830347377, 3.757295531641517, 4.417050551122865, 5.346783869414042, 5.938244978699768, 6.768149123038685, 7.360341002989877, 7.908569762731420, 8.241138077272861, 9.021619027851031, 9.561238178358686, 9.939806785173112, 10.72999397173804, 11.16072088498975, 11.91701558261291, 12.30469289938020, 12.86293940864128, 13.79299598771016, 14.05163547008752, 14.65482828210726, 15.34398417147601, 15.76590373037474

Graph of the $Z$-function along the critical line