Properties

Label 2-187200-1.1-c1-0-166
Degree $2$
Conductor $187200$
Sign $1$
Analytic cond. $1494.79$
Root an. cond. $38.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 2·11-s − 13-s − 2·17-s + 2·19-s + 8·23-s − 6·29-s + 2·31-s + 2·37-s + 2·41-s − 6·47-s − 3·49-s + 10·53-s + 14·59-s + 10·61-s − 2·67-s − 6·71-s − 2·73-s − 4·77-s + 12·79-s + 6·83-s + 18·89-s − 2·91-s + 14·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.755·7-s − 0.603·11-s − 0.277·13-s − 0.485·17-s + 0.458·19-s + 1.66·23-s − 1.11·29-s + 0.359·31-s + 0.328·37-s + 0.312·41-s − 0.875·47-s − 3/7·49-s + 1.37·53-s + 1.82·59-s + 1.28·61-s − 0.244·67-s − 0.712·71-s − 0.234·73-s − 0.455·77-s + 1.35·79-s + 0.658·83-s + 1.90·89-s − 0.209·91-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(187200\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1494.79\)
Root analytic conductor: \(38.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 187200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.093633871\)
\(L(\frac12)\) \(\approx\) \(3.093633871\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15893213303010, −12.92683147255835, −12.03237404061737, −11.67057433677928, −11.24915904875829, −10.89349403193066, −10.25323687119412, −9.942311913337007, −9.177967156622382, −8.916418855458683, −8.368051346137411, −7.744413374814563, −7.476450546787215, −6.895017720125932, −6.414170762022407, −5.663109743836321, −5.201005901199033, −4.870846929380639, −4.318400566106183, −3.558382211825186, −3.129370597196116, −2.271284441316822, −2.051046057734989, −1.059025736097215, −0.5657397400821620, 0.5657397400821620, 1.059025736097215, 2.051046057734989, 2.271284441316822, 3.129370597196116, 3.558382211825186, 4.318400566106183, 4.870846929380639, 5.201005901199033, 5.663109743836321, 6.414170762022407, 6.895017720125932, 7.476450546787215, 7.744413374814563, 8.368051346137411, 8.916418855458683, 9.177967156622382, 9.942311913337007, 10.25323687119412, 10.89349403193066, 11.24915904875829, 11.67057433677928, 12.03237404061737, 12.92683147255835, 13.15893213303010

Graph of the $Z$-function along the critical line