Properties

Label 2-178752-1.1-c1-0-62
Degree $2$
Conductor $178752$
Sign $1$
Analytic cond. $1427.34$
Root an. cond. $37.7801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 2·11-s − 4·13-s − 19-s + 6·23-s − 5·25-s + 27-s − 2·29-s + 4·31-s + 2·33-s − 2·37-s − 4·39-s − 2·41-s − 8·43-s − 8·47-s + 6·53-s − 57-s + 4·59-s + 14·61-s − 2·67-s + 6·69-s + 6·73-s − 5·75-s + 10·79-s + 81-s − 2·87-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 0.603·11-s − 1.10·13-s − 0.229·19-s + 1.25·23-s − 25-s + 0.192·27-s − 0.371·29-s + 0.718·31-s + 0.348·33-s − 0.328·37-s − 0.640·39-s − 0.312·41-s − 1.21·43-s − 1.16·47-s + 0.824·53-s − 0.132·57-s + 0.520·59-s + 1.79·61-s − 0.244·67-s + 0.722·69-s + 0.702·73-s − 0.577·75-s + 1.12·79-s + 1/9·81-s − 0.214·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178752\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1427.34\)
Root analytic conductor: \(37.7801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 178752,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.729046158\)
\(L(\frac12)\) \(\approx\) \(2.729046158\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.08548928960996, −12.92669350247157, −12.11644581730913, −11.81549875965158, −11.41497320330032, −10.76767136857308, −10.20352788152642, −9.720434153095498, −9.505924141898603, −8.853296520146090, −8.332888483959777, −8.045885793136588, −7.251266554902257, −6.980387685127338, −6.539202006821812, −5.816281134643865, −5.193954481674227, −4.775690689400743, −4.213776026466791, −3.520306839105979, −3.204650452332897, −2.351697702342058, −2.026000955285890, −1.240824918066772, −0.4623605877844208, 0.4623605877844208, 1.240824918066772, 2.026000955285890, 2.351697702342058, 3.204650452332897, 3.520306839105979, 4.213776026466791, 4.775690689400743, 5.193954481674227, 5.816281134643865, 6.539202006821812, 6.980387685127338, 7.251266554902257, 8.045885793136588, 8.332888483959777, 8.853296520146090, 9.505924141898603, 9.720434153095498, 10.20352788152642, 10.76767136857308, 11.41497320330032, 11.81549875965158, 12.11644581730913, 12.92669350247157, 13.08548928960996

Graph of the $Z$-function along the critical line