Properties

Label 2-178464-1.1-c1-0-33
Degree $2$
Conductor $178464$
Sign $1$
Analytic cond. $1425.04$
Root an. cond. $37.7497$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 4·7-s + 9-s − 11-s + 2·15-s + 4·17-s − 6·19-s + 4·21-s − 6·23-s − 25-s + 27-s + 6·29-s + 6·31-s − 33-s + 8·35-s + 4·37-s + 10·41-s + 8·43-s + 2·45-s − 12·47-s + 9·49-s + 4·51-s − 12·53-s − 2·55-s − 6·57-s + 12·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1.51·7-s + 1/3·9-s − 0.301·11-s + 0.516·15-s + 0.970·17-s − 1.37·19-s + 0.872·21-s − 1.25·23-s − 1/5·25-s + 0.192·27-s + 1.11·29-s + 1.07·31-s − 0.174·33-s + 1.35·35-s + 0.657·37-s + 1.56·41-s + 1.21·43-s + 0.298·45-s − 1.75·47-s + 9/7·49-s + 0.560·51-s − 1.64·53-s − 0.269·55-s − 0.794·57-s + 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178464\)    =    \(2^{5} \cdot 3 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1425.04\)
Root analytic conductor: \(37.7497\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 178464,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.066605245\)
\(L(\frac12)\) \(\approx\) \(6.066605245\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.17911713243066, −12.66444027315618, −12.45779261005805, −11.54967250688140, −11.41509139093903, −10.74163437830556, −10.23935925797412, −9.816385836421773, −9.555048333723021, −8.682597101693589, −8.307505858070900, −7.999599230948102, −7.662747170422241, −6.838699566499844, −6.270991685421816, −5.881012574374886, −5.276050782567290, −4.730682822445418, −4.273795980166190, −3.780449730269703, −2.868562365572377, −2.294301527292331, −2.028788375151743, −1.310523742671377, −0.6921402763927161, 0.6921402763927161, 1.310523742671377, 2.028788375151743, 2.294301527292331, 2.868562365572377, 3.780449730269703, 4.273795980166190, 4.730682822445418, 5.276050782567290, 5.881012574374886, 6.270991685421816, 6.838699566499844, 7.662747170422241, 7.999599230948102, 8.307505858070900, 8.682597101693589, 9.555048333723021, 9.816385836421773, 10.23935925797412, 10.74163437830556, 11.41509139093903, 11.54967250688140, 12.45779261005805, 12.66444027315618, 13.17911713243066

Graph of the $Z$-function along the critical line