Properties

Label 2-174240-1.1-c1-0-31
Degree $2$
Conductor $174240$
Sign $1$
Analytic cond. $1391.31$
Root an. cond. $37.3003$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·13-s − 2·17-s + 25-s + 6·29-s + 4·31-s + 6·37-s − 2·41-s + 8·43-s − 7·49-s − 10·53-s − 12·59-s + 2·61-s + 2·65-s + 4·67-s − 8·71-s + 6·73-s − 8·79-s + 4·83-s − 2·85-s + 6·89-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.554·13-s − 0.485·17-s + 1/5·25-s + 1.11·29-s + 0.718·31-s + 0.986·37-s − 0.312·41-s + 1.21·43-s − 49-s − 1.37·53-s − 1.56·59-s + 0.256·61-s + 0.248·65-s + 0.488·67-s − 0.949·71-s + 0.702·73-s − 0.900·79-s + 0.439·83-s − 0.216·85-s + 0.635·89-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 174240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 174240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(174240\)    =    \(2^{5} \cdot 3^{2} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1391.31\)
Root analytic conductor: \(37.3003\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 174240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.777037531\)
\(L(\frac12)\) \(\approx\) \(2.777037531\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.27716508996162, −12.74073540038951, −12.29040151808744, −11.82111111167754, −11.10495492033106, −10.99869012042843, −10.29585207899268, −9.921151317012545, −9.326135321014409, −8.986758145134493, −8.398798113965481, −7.912522061277931, −7.503753551302306, −6.683694284588193, −6.339043697243347, −6.044578670378574, −5.276990003922614, −4.755444291245434, −4.321832818899965, −3.685975583762738, −2.912771309354263, −2.633481962468473, −1.774592228647460, −1.245778168055254, −0.4969293557288790, 0.4969293557288790, 1.245778168055254, 1.774592228647460, 2.633481962468473, 2.912771309354263, 3.685975583762738, 4.321832818899965, 4.755444291245434, 5.276990003922614, 6.044578670378574, 6.339043697243347, 6.683694284588193, 7.503753551302306, 7.912522061277931, 8.398798113965481, 8.986758145134493, 9.326135321014409, 9.921151317012545, 10.29585207899268, 10.99869012042843, 11.10495492033106, 11.82111111167754, 12.29040151808744, 12.74073540038951, 13.27716508996162

Graph of the $Z$-function along the critical line