Properties

Label 174240.dn
Number of curves $4$
Conductor $174240$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 174240.dn have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 174240.dn do not have complex multiplication.

Modular form 174240.2.a.dn

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + 2 q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 174240.dn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
174240.dn1 174240ct2 \([0, 0, 0, -3197667, 2200880374]\) \(5468520153032/22275\) \(14728933892851200\) \([2]\) \(1966080\) \(2.3128\)  
174240.dn2 174240ct4 \([0, 0, 0, -611292, -142810976]\) \(4775581504/1098075\) \(5808655114484428800\) \([2]\) \(1966080\) \(2.3128\)  
174240.dn3 174240ct1 \([0, 0, 0, -202917, 33280324]\) \(11179320256/680625\) \(56256344729640000\) \([2, 2]\) \(983040\) \(1.9662\) \(\Gamma_0(N)\)-optimal
174240.dn4 174240ct3 \([0, 0, 0, 156453, 138431986]\) \(640503928/12890625\) \(-8523688595400000000\) \([2]\) \(1966080\) \(2.3128\)