Properties

Label 2-174240-1.1-c1-0-22
Degree $2$
Conductor $174240$
Sign $1$
Analytic cond. $1391.31$
Root an. cond. $37.3003$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·13-s − 2·17-s + 8·19-s + 4·23-s + 25-s − 6·29-s + 2·37-s − 6·41-s + 4·43-s − 12·47-s − 7·49-s + 6·53-s + 12·59-s − 14·61-s − 2·65-s + 12·67-s − 2·73-s − 8·79-s + 4·83-s − 2·85-s − 2·89-s + 8·95-s − 14·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.554·13-s − 0.485·17-s + 1.83·19-s + 0.834·23-s + 1/5·25-s − 1.11·29-s + 0.328·37-s − 0.937·41-s + 0.609·43-s − 1.75·47-s − 49-s + 0.824·53-s + 1.56·59-s − 1.79·61-s − 0.248·65-s + 1.46·67-s − 0.234·73-s − 0.900·79-s + 0.439·83-s − 0.216·85-s − 0.211·89-s + 0.820·95-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 174240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 174240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(174240\)    =    \(2^{5} \cdot 3^{2} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1391.31\)
Root analytic conductor: \(37.3003\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 174240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.214075126\)
\(L(\frac12)\) \(\approx\) \(2.214075126\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.32005691089401, −12.74622968392792, −12.30980050097132, −11.65888050990962, −11.36660033633941, −10.92459943512418, −10.26645700692467, −9.741375982526167, −9.473650009081061, −9.068026372595026, −8.336753487761255, −7.934023749413206, −7.308183220090842, −6.906691917312347, −6.499164485270929, −5.655384579351261, −5.362972455382673, −4.923228225448355, −4.273883918211775, −3.581227655967067, −3.038275113622561, −2.571015882611497, −1.763870156754951, −1.292128867160636, −0.4313945754370202, 0.4313945754370202, 1.292128867160636, 1.763870156754951, 2.571015882611497, 3.038275113622561, 3.581227655967067, 4.273883918211775, 4.923228225448355, 5.362972455382673, 5.655384579351261, 6.499164485270929, 6.906691917312347, 7.308183220090842, 7.934023749413206, 8.336753487761255, 9.068026372595026, 9.473650009081061, 9.741375982526167, 10.26645700692467, 10.92459943512418, 11.36660033633941, 11.65888050990962, 12.30980050097132, 12.74622968392792, 13.32005691089401

Graph of the $Z$-function along the critical line