Properties

Label 2-132e2-1.1-c1-0-26
Degree $2$
Conductor $17424$
Sign $-1$
Analytic cond. $139.131$
Root an. cond. $11.7953$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 4·7-s + 3·13-s − 3·17-s − 4·19-s − 8·23-s + 4·25-s + 5·29-s + 4·31-s + 12·35-s + 11·37-s − 7·41-s + 12·43-s − 8·47-s + 9·49-s + 53-s − 4·59-s − 2·61-s − 9·65-s − 4·67-s + 12·71-s + 10·73-s − 8·79-s + 4·83-s + 9·85-s − 3·89-s − 12·91-s + ⋯
L(s)  = 1  − 1.34·5-s − 1.51·7-s + 0.832·13-s − 0.727·17-s − 0.917·19-s − 1.66·23-s + 4/5·25-s + 0.928·29-s + 0.718·31-s + 2.02·35-s + 1.80·37-s − 1.09·41-s + 1.82·43-s − 1.16·47-s + 9/7·49-s + 0.137·53-s − 0.520·59-s − 0.256·61-s − 1.11·65-s − 0.488·67-s + 1.42·71-s + 1.17·73-s − 0.900·79-s + 0.439·83-s + 0.976·85-s − 0.317·89-s − 1.25·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17424 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17424 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17424\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(139.131\)
Root analytic conductor: \(11.7953\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 17424,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.95895401032294, −15.61667268930346, −15.37597956472363, −14.51095021629568, −13.83767387064870, −13.32616094358348, −12.66527081640536, −12.37923148739063, −11.65497236577509, −11.20604502693789, −10.53372615731414, −9.958032877184772, −9.377665261565610, −8.614518369763991, −8.181149841934773, −7.625858328008450, −6.771985646959634, −6.295642947675732, −5.949748943528739, −4.647249707877406, −4.163563364434158, −3.645309210712431, −2.963116743295113, −2.161108003256668, −0.7756358043250667, 0, 0.7756358043250667, 2.161108003256668, 2.963116743295113, 3.645309210712431, 4.163563364434158, 4.647249707877406, 5.949748943528739, 6.295642947675732, 6.771985646959634, 7.625858328008450, 8.181149841934773, 8.614518369763991, 9.377665261565610, 9.958032877184772, 10.53372615731414, 11.20604502693789, 11.65497236577509, 12.37923148739063, 12.66527081640536, 13.32616094358348, 13.83767387064870, 14.51095021629568, 15.37597956472363, 15.61667268930346, 15.95895401032294

Graph of the $Z$-function along the critical line