Properties

Label 2-174087-1.1-c1-0-3
Degree $2$
Conductor $174087$
Sign $-1$
Analytic cond. $1390.09$
Root an. cond. $37.2839$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 2·5-s − 2·7-s − 3·8-s − 2·10-s − 2·11-s + 2·13-s − 2·14-s − 16-s − 6·17-s − 4·19-s + 2·20-s − 2·22-s + 23-s − 25-s + 2·26-s + 2·28-s + 4·31-s + 5·32-s − 6·34-s + 4·35-s + 6·37-s − 4·38-s + 6·40-s − 6·41-s − 4·43-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.894·5-s − 0.755·7-s − 1.06·8-s − 0.632·10-s − 0.603·11-s + 0.554·13-s − 0.534·14-s − 1/4·16-s − 1.45·17-s − 0.917·19-s + 0.447·20-s − 0.426·22-s + 0.208·23-s − 1/5·25-s + 0.392·26-s + 0.377·28-s + 0.718·31-s + 0.883·32-s − 1.02·34-s + 0.676·35-s + 0.986·37-s − 0.648·38-s + 0.948·40-s − 0.937·41-s − 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 174087 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 174087 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(174087\)    =    \(3^{2} \cdot 23 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(1390.09\)
Root analytic conductor: \(37.2839\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 174087,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
23 \( 1 - T \)
29 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.25038670719751, −13.07339081357685, −12.61975104442957, −12.19755069813217, −11.47215706448249, −11.29554864530521, −10.69862329020671, −10.06778895654218, −9.672106323061030, −9.027374029533381, −8.633736941463579, −8.196123500160806, −7.775213255127000, −6.913046633206295, −6.595343648096810, −6.077643772865051, −5.600266874569894, −4.809419658893146, −4.466771526184510, −4.055125808242157, −3.487065529069578, −2.952027837901324, −2.464359512981169, −1.567252550514321, −0.4825364019725469, 0, 0.4825364019725469, 1.567252550514321, 2.464359512981169, 2.952027837901324, 3.487065529069578, 4.055125808242157, 4.466771526184510, 4.809419658893146, 5.600266874569894, 6.077643772865051, 6.595343648096810, 6.913046633206295, 7.775213255127000, 8.196123500160806, 8.633736941463579, 9.027374029533381, 9.672106323061030, 10.06778895654218, 10.69862329020671, 11.29554864530521, 11.47215706448249, 12.19755069813217, 12.61975104442957, 13.07339081357685, 13.25038670719751

Graph of the $Z$-function along the critical line