Properties

Label 2-162624-1.1-c1-0-37
Degree $2$
Conductor $162624$
Sign $1$
Analytic cond. $1298.55$
Root an. cond. $36.0355$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s − 2·13-s − 4·17-s + 4·19-s + 21-s + 6·23-s − 5·25-s − 27-s − 2·29-s + 6·37-s + 2·39-s − 8·41-s + 8·43-s + 4·47-s + 49-s + 4·51-s + 6·53-s − 4·57-s − 14·61-s − 63-s + 4·67-s − 6·69-s + 2·71-s + 2·73-s + 5·75-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.554·13-s − 0.970·17-s + 0.917·19-s + 0.218·21-s + 1.25·23-s − 25-s − 0.192·27-s − 0.371·29-s + 0.986·37-s + 0.320·39-s − 1.24·41-s + 1.21·43-s + 0.583·47-s + 1/7·49-s + 0.560·51-s + 0.824·53-s − 0.529·57-s − 1.79·61-s − 0.125·63-s + 0.488·67-s − 0.722·69-s + 0.237·71-s + 0.234·73-s + 0.577·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162624\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1298.55\)
Root analytic conductor: \(36.0355\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162624,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.302756154\)
\(L(\frac12)\) \(\approx\) \(1.302756154\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.32153535942087, −12.71910199949482, −12.34012215216041, −11.79135949896189, −11.35340715333555, −11.01433642016039, −10.39145284887776, −9.970518986831125, −9.403622811272173, −9.093340921989963, −8.546493122106668, −7.706999174698325, −7.439142864821214, −6.943590587682851, −6.361695428742539, −5.921363574949223, −5.322122033384429, −4.902003552325201, −4.291587270785317, −3.782873196758185, −3.062187248288956, −2.527949575274483, −1.859330828995490, −1.066712391562557, −0.3846915858540501, 0.3846915858540501, 1.066712391562557, 1.859330828995490, 2.527949575274483, 3.062187248288956, 3.782873196758185, 4.291587270785317, 4.902003552325201, 5.322122033384429, 5.921363574949223, 6.361695428742539, 6.943590587682851, 7.439142864821214, 7.706999174698325, 8.546493122106668, 9.093340921989963, 9.403622811272173, 9.970518986831125, 10.39145284887776, 11.01433642016039, 11.35340715333555, 11.79135949896189, 12.34012215216041, 12.71910199949482, 13.32153535942087

Graph of the $Z$-function along the critical line