Properties

Label 2-162288-1.1-c1-0-86
Degree $2$
Conductor $162288$
Sign $-1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 2·11-s + 2·13-s − 4·17-s − 23-s − 25-s + 10·29-s − 4·37-s − 6·41-s + 4·43-s − 8·47-s + 6·53-s + 4·55-s − 4·59-s − 8·61-s − 4·65-s + 4·67-s + 8·71-s − 6·73-s − 6·79-s + 6·83-s + 8·85-s − 4·89-s − 10·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.603·11-s + 0.554·13-s − 0.970·17-s − 0.208·23-s − 1/5·25-s + 1.85·29-s − 0.657·37-s − 0.937·41-s + 0.609·43-s − 1.16·47-s + 0.824·53-s + 0.539·55-s − 0.520·59-s − 1.02·61-s − 0.496·65-s + 0.488·67-s + 0.949·71-s − 0.702·73-s − 0.675·79-s + 0.658·83-s + 0.867·85-s − 0.423·89-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.48025215087067, −13.08438950670044, −12.44114608398298, −12.06566297431681, −11.67424180137156, −11.01357994555112, −10.85178332620712, −10.12932728972238, −9.852798359611073, −9.004630186237546, −8.635307554100796, −8.191700086264345, −7.813451532116483, −7.186282643685190, −6.660107671707558, −6.291699887017038, −5.571192894677454, −5.014095334461881, −4.435188985322584, −4.095389346728493, −3.340082395357583, −2.947044760266630, −2.202669667961932, −1.547792371258727, −0.6752160042391586, 0, 0.6752160042391586, 1.547792371258727, 2.202669667961932, 2.947044760266630, 3.340082395357583, 4.095389346728493, 4.435188985322584, 5.014095334461881, 5.571192894677454, 6.291699887017038, 6.660107671707558, 7.186282643685190, 7.813451532116483, 8.191700086264345, 8.635307554100796, 9.004630186237546, 9.852798359611073, 10.12932728972238, 10.85178332620712, 11.01357994555112, 11.67424180137156, 12.06566297431681, 12.44114608398298, 13.08438950670044, 13.48025215087067

Graph of the $Z$-function along the critical line