Properties

Label 2-15950-1.1-c1-0-7
Degree $2$
Conductor $15950$
Sign $-1$
Analytic cond. $127.361$
Root an. cond. $11.2854$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s − 2·7-s + 8-s − 2·9-s + 11-s − 12-s − 13-s − 2·14-s + 16-s − 2·17-s − 2·18-s + 2·21-s + 22-s − 23-s − 24-s − 26-s + 5·27-s − 2·28-s − 29-s + 2·31-s + 32-s − 33-s − 2·34-s − 2·36-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.755·7-s + 0.353·8-s − 2/3·9-s + 0.301·11-s − 0.288·12-s − 0.277·13-s − 0.534·14-s + 1/4·16-s − 0.485·17-s − 0.471·18-s + 0.436·21-s + 0.213·22-s − 0.208·23-s − 0.204·24-s − 0.196·26-s + 0.962·27-s − 0.377·28-s − 0.185·29-s + 0.359·31-s + 0.176·32-s − 0.174·33-s − 0.342·34-s − 1/3·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15950\)    =    \(2 \cdot 5^{2} \cdot 11 \cdot 29\)
Sign: $-1$
Analytic conductor: \(127.361\)
Root analytic conductor: \(11.2854\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 15950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
11 \( 1 - T \)
29 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + T + p T^{2} \) 1.23.b
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.31334173034947, −15.64176769977991, −15.17409931507486, −14.53989937624309, −13.93506397796498, −13.56955675803503, −12.80590317553559, −12.28808875910580, −11.99701191263336, −11.10604309895532, −10.92318305086012, −10.16840464314919, −9.372852179524395, −9.018473393899320, −8.051568269039843, −7.503364237524891, −6.601574878906347, −6.325582737110527, −5.697499012945942, −5.070526375616634, −4.327466988909981, −3.696630579790931, −2.834284074862033, −2.324064141436127, −1.059881443976198, 0, 1.059881443976198, 2.324064141436127, 2.834284074862033, 3.696630579790931, 4.327466988909981, 5.070526375616634, 5.697499012945942, 6.325582737110527, 6.601574878906347, 7.503364237524891, 8.051568269039843, 9.018473393899320, 9.372852179524395, 10.16840464314919, 10.92318305086012, 11.10604309895532, 11.99701191263336, 12.28808875910580, 12.80590317553559, 13.56955675803503, 13.93506397796498, 14.53989937624309, 15.17409931507486, 15.64176769977991, 16.31334173034947

Graph of the $Z$-function along the critical line