Properties

Label 2-155232-1.1-c1-0-106
Degree $2$
Conductor $155232$
Sign $-1$
Analytic cond. $1239.53$
Root an. cond. $35.2070$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 11-s − 6·13-s + 2·19-s − 4·23-s + 11·25-s + 2·29-s + 2·31-s + 2·37-s − 4·43-s + 6·47-s − 2·53-s − 4·55-s − 14·61-s − 24·65-s − 12·67-s − 8·71-s + 4·73-s + 8·79-s + 2·83-s − 14·89-s + 8·95-s − 2·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 1.78·5-s − 0.301·11-s − 1.66·13-s + 0.458·19-s − 0.834·23-s + 11/5·25-s + 0.371·29-s + 0.359·31-s + 0.328·37-s − 0.609·43-s + 0.875·47-s − 0.274·53-s − 0.539·55-s − 1.79·61-s − 2.97·65-s − 1.46·67-s − 0.949·71-s + 0.468·73-s + 0.900·79-s + 0.219·83-s − 1.48·89-s + 0.820·95-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 155232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 155232 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(155232\)    =    \(2^{5} \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(1239.53\)
Root analytic conductor: \(35.2070\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 155232,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.69869785101258, −13.13971442352904, −12.63428220631221, −12.06782509939156, −11.93003558071018, −10.98480935556824, −10.52289299252890, −10.14786176346021, −9.638247992118971, −9.493617402674124, −8.852612788441162, −8.285466982991964, −7.585150756080822, −7.247440473100401, −6.614233268666624, −6.024910701581685, −5.766047112628742, −5.068948917427995, −4.769163195680381, −4.161997739615381, −3.031061586355206, −2.852957371479951, −2.094158539712722, −1.770615521888139, −0.9311197575093329, 0, 0.9311197575093329, 1.770615521888139, 2.094158539712722, 2.852957371479951, 3.031061586355206, 4.161997739615381, 4.769163195680381, 5.068948917427995, 5.766047112628742, 6.024910701581685, 6.614233268666624, 7.247440473100401, 7.585150756080822, 8.285466982991964, 8.852612788441162, 9.493617402674124, 9.638247992118971, 10.14786176346021, 10.52289299252890, 10.98480935556824, 11.93003558071018, 12.06782509939156, 12.63428220631221, 13.13971442352904, 13.69869785101258

Graph of the $Z$-function along the critical line