Properties

Label 155232.eo
Number of curves $2$
Conductor $155232$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eo1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 155232.eo have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 155232.eo do not have complex multiplication.

Modular form 155232.2.a.eo

Copy content sage:E.q_eigenform(10)
 
\(q + 4 q^{5} - q^{11} - 6 q^{13} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 155232.eo

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
155232.eo1 155232ei2 \([0, 0, 0, -42483, -2630810]\) \(193100552/43659\) \(1917165095290368\) \([2]\) \(983040\) \(1.6452\)  
155232.eo2 155232ei1 \([0, 0, 0, 6027, -253820]\) \(4410944/7623\) \(-41842888984512\) \([2]\) \(491520\) \(1.2987\) \(\Gamma_0(N)\)-optimal