Properties

Label 2-151008-1.1-c1-0-47
Degree $2$
Conductor $151008$
Sign $1$
Analytic cond. $1205.80$
Root an. cond. $34.7247$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s − 13-s − 2·15-s + 6·17-s − 8·19-s − 8·23-s − 25-s + 27-s − 2·29-s − 8·31-s − 10·37-s − 39-s − 6·41-s − 4·43-s − 2·45-s − 7·49-s + 6·51-s − 14·53-s − 8·57-s + 12·59-s + 10·61-s + 2·65-s + 8·67-s − 8·69-s + 14·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s − 0.277·13-s − 0.516·15-s + 1.45·17-s − 1.83·19-s − 1.66·23-s − 1/5·25-s + 0.192·27-s − 0.371·29-s − 1.43·31-s − 1.64·37-s − 0.160·39-s − 0.937·41-s − 0.609·43-s − 0.298·45-s − 49-s + 0.840·51-s − 1.92·53-s − 1.05·57-s + 1.56·59-s + 1.28·61-s + 0.248·65-s + 0.977·67-s − 0.963·69-s + 1.63·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 151008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 151008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(151008\)    =    \(2^{5} \cdot 3 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1205.80\)
Root analytic conductor: \(34.7247\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 151008,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.96204893304236, −13.26113635440503, −12.77218518454788, −12.38329148466785, −12.05828478006805, −11.40719559407462, −11.03291264755771, −10.36656185150420, −9.922337548490134, −9.641429755488211, −8.827679994127359, −8.318842658795199, −8.119254887284217, −7.622891485732052, −7.047183077412103, −6.552952360220034, −5.972954171787956, −5.241068882272588, −4.886577842329342, −3.983949344335300, −3.654788451941504, −3.475318896340354, −2.395928491241540, −1.972777445432613, −1.352095544682272, 0, 0, 1.352095544682272, 1.972777445432613, 2.395928491241540, 3.475318896340354, 3.654788451941504, 3.983949344335300, 4.886577842329342, 5.241068882272588, 5.972954171787956, 6.552952360220034, 7.047183077412103, 7.622891485732052, 8.119254887284217, 8.318842658795199, 8.827679994127359, 9.641429755488211, 9.922337548490134, 10.36656185150420, 11.03291264755771, 11.40719559407462, 12.05828478006805, 12.38329148466785, 12.77218518454788, 13.26113635440503, 13.96204893304236

Graph of the $Z$-function along the critical line