Properties

Label 2-150590-1.1-c1-0-12
Degree $2$
Conductor $150590$
Sign $-1$
Analytic cond. $1202.46$
Root an. cond. $34.6766$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s − 5-s − 2·6-s − 4·7-s + 8-s + 9-s − 10-s + 11-s − 2·12-s + 2·13-s − 4·14-s + 2·15-s + 16-s + 2·17-s + 18-s − 20-s + 8·21-s + 22-s − 2·24-s + 25-s + 2·26-s + 4·27-s − 4·28-s − 4·29-s + 2·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.447·5-s − 0.816·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s − 0.577·12-s + 0.554·13-s − 1.06·14-s + 0.516·15-s + 1/4·16-s + 0.485·17-s + 0.235·18-s − 0.223·20-s + 1.74·21-s + 0.213·22-s − 0.408·24-s + 1/5·25-s + 0.392·26-s + 0.769·27-s − 0.755·28-s − 0.742·29-s + 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150590 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150590 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150590\)    =    \(2 \cdot 5 \cdot 11 \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(1202.46\)
Root analytic conductor: \(34.6766\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 150590,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 + T \)
11 \( 1 - T \)
37 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 10 T + p T^{2} \) 1.31.k
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.39985298584705, −12.98645556232368, −12.51321316289952, −12.27042937001137, −11.78384478192902, −11.17631549287757, −10.88535659547220, −10.48137123455056, −9.809291153200718, −9.307214891879604, −8.903027592147902, −8.125338403120782, −7.479842448519346, −7.026629407370767, −6.555985047955412, −6.119550347668192, −5.616710798081891, −5.374242774550079, −4.541679482615424, −4.003591150790264, −3.440419518565349, −3.161709910077342, −2.309046368314419, −1.462189782806119, −0.6581291492391769, 0, 0.6581291492391769, 1.462189782806119, 2.309046368314419, 3.161709910077342, 3.440419518565349, 4.003591150790264, 4.541679482615424, 5.374242774550079, 5.616710798081891, 6.119550347668192, 6.555985047955412, 7.026629407370767, 7.479842448519346, 8.125338403120782, 8.903027592147902, 9.307214891879604, 9.809291153200718, 10.48137123455056, 10.88535659547220, 11.17631549287757, 11.78384478192902, 12.27042937001137, 12.51321316289952, 12.98645556232368, 13.39985298584705

Graph of the $Z$-function along the critical line