Properties

Label 2-14976-1.1-c1-0-18
Degree $2$
Conductor $14976$
Sign $-1$
Analytic cond. $119.583$
Root an. cond. $10.9354$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 4·7-s − 6·11-s + 13-s + 2·17-s − 6·19-s + 4·23-s − 25-s + 10·29-s + 8·31-s − 8·35-s + 6·37-s + 6·41-s − 10·43-s + 9·49-s − 6·53-s − 12·55-s + 10·59-s − 2·61-s + 2·65-s + 2·67-s + 4·71-s − 2·73-s + 24·77-s − 8·79-s + 14·83-s + 4·85-s + ⋯
L(s)  = 1  + 0.894·5-s − 1.51·7-s − 1.80·11-s + 0.277·13-s + 0.485·17-s − 1.37·19-s + 0.834·23-s − 1/5·25-s + 1.85·29-s + 1.43·31-s − 1.35·35-s + 0.986·37-s + 0.937·41-s − 1.52·43-s + 9/7·49-s − 0.824·53-s − 1.61·55-s + 1.30·59-s − 0.256·61-s + 0.248·65-s + 0.244·67-s + 0.474·71-s − 0.234·73-s + 2.73·77-s − 0.900·79-s + 1.53·83-s + 0.433·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14976\)    =    \(2^{7} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(119.583\)
Root analytic conductor: \(10.9354\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 14976,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.20651074223571, −15.84931502494129, −15.37172607549108, −14.71486401834401, −13.89812300066647, −13.43825166920582, −12.97030585415408, −12.73326717524251, −11.99172241223742, −11.10100747588476, −10.42627669925170, −10.05398319295822, −9.765756804021163, −8.894703419008846, −8.287976414496193, −7.740056327876340, −6.711111863139085, −6.403388635842873, −5.837164769448394, −5.099492319599255, −4.453945723336481, −3.410313612767244, −2.681123994305399, −2.409841072109003, −1.034804605517043, 0, 1.034804605517043, 2.409841072109003, 2.681123994305399, 3.410313612767244, 4.453945723336481, 5.099492319599255, 5.837164769448394, 6.403388635842873, 6.711111863139085, 7.740056327876340, 8.287976414496193, 8.894703419008846, 9.765756804021163, 10.05398319295822, 10.42627669925170, 11.10100747588476, 11.99172241223742, 12.73326717524251, 12.97030585415408, 13.43825166920582, 13.89812300066647, 14.71486401834401, 15.37172607549108, 15.84931502494129, 16.20651074223571

Graph of the $Z$-function along the critical line