Properties

Label 2-143650-1.1-c1-0-43
Degree $2$
Conductor $143650$
Sign $-1$
Analytic cond. $1147.05$
Root an. cond. $33.8681$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s − 2·6-s + 5·7-s − 8-s + 9-s − 3·11-s + 2·12-s − 5·14-s + 16-s − 17-s − 18-s − 2·19-s + 10·21-s + 3·22-s + 9·23-s − 2·24-s − 4·27-s + 5·28-s + 6·29-s − 8·31-s − 32-s − 6·33-s + 34-s + 36-s + 2·37-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.816·6-s + 1.88·7-s − 0.353·8-s + 1/3·9-s − 0.904·11-s + 0.577·12-s − 1.33·14-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 0.458·19-s + 2.18·21-s + 0.639·22-s + 1.87·23-s − 0.408·24-s − 0.769·27-s + 0.944·28-s + 1.11·29-s − 1.43·31-s − 0.176·32-s − 1.04·33-s + 0.171·34-s + 1/6·36-s + 0.328·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(143650\)    =    \(2 \cdot 5^{2} \cdot 13^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(1147.05\)
Root analytic conductor: \(33.8681\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 143650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
13 \( 1 \)
17 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 + 3 T + p T^{2} \) 1.11.d
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.49983008271386, −13.44231205482268, −12.68519702486529, −12.12184329803861, −11.54701212950764, −11.13165518912797, −10.61405344741047, −10.46408191762047, −9.609035451487889, −9.024863069693427, −8.673313594060079, −8.447917857688285, −7.821983019663635, −7.520814142451815, −7.095779785914075, −6.352103546962742, −5.544728456490369, −5.086110168198841, −4.649672366035039, −3.988621163316347, −3.093841735210082, −2.838703810589421, −2.056048602411006, −1.710194727110118, −1.031813593967525, 0, 1.031813593967525, 1.710194727110118, 2.056048602411006, 2.838703810589421, 3.093841735210082, 3.988621163316347, 4.649672366035039, 5.086110168198841, 5.544728456490369, 6.352103546962742, 7.095779785914075, 7.520814142451815, 7.821983019663635, 8.447917857688285, 8.673313594060079, 9.024863069693427, 9.609035451487889, 10.46408191762047, 10.61405344741047, 11.13165518912797, 11.54701212950764, 12.12184329803861, 12.68519702486529, 13.44231205482268, 13.49983008271386

Graph of the $Z$-function along the critical line