Properties

Label 2-141570-1.1-c1-0-41
Degree $2$
Conductor $141570$
Sign $1$
Analytic cond. $1130.44$
Root an. cond. $33.6220$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 2·7-s − 8-s + 10-s + 13-s + 2·14-s + 16-s + 4·17-s + 2·19-s − 20-s + 6·23-s + 25-s − 26-s − 2·28-s − 4·29-s − 8·31-s − 32-s − 4·34-s + 2·35-s + 2·37-s − 2·38-s + 40-s + 2·41-s + 12·43-s − 6·46-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.755·7-s − 0.353·8-s + 0.316·10-s + 0.277·13-s + 0.534·14-s + 1/4·16-s + 0.970·17-s + 0.458·19-s − 0.223·20-s + 1.25·23-s + 1/5·25-s − 0.196·26-s − 0.377·28-s − 0.742·29-s − 1.43·31-s − 0.176·32-s − 0.685·34-s + 0.338·35-s + 0.328·37-s − 0.324·38-s + 0.158·40-s + 0.312·41-s + 1.82·43-s − 0.884·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141570\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1130.44\)
Root analytic conductor: \(33.6220\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 141570,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.789565679\)
\(L(\frac12)\) \(\approx\) \(1.789565679\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.17783141955715, −12.75176051089418, −12.59123106977845, −11.91132291734556, −11.28548715443447, −11.01717546700913, −10.61835464503272, −9.799802693462130, −9.542495502345720, −9.182693610861915, −8.552665528765913, −8.031176444309393, −7.520706649380977, −7.114139885783901, −6.674467626956261, −5.980067733515994, −5.489610001251396, −5.045004590572284, −4.112204951368987, −3.567816436321816, −3.229928136541348, −2.507618080012893, −1.842548336640643, −0.9079900789367524, −0.5808123241099201, 0.5808123241099201, 0.9079900789367524, 1.842548336640643, 2.507618080012893, 3.229928136541348, 3.567816436321816, 4.112204951368987, 5.045004590572284, 5.489610001251396, 5.980067733515994, 6.674467626956261, 7.114139885783901, 7.520706649380977, 8.031176444309393, 8.552665528765913, 9.182693610861915, 9.542495502345720, 9.799802693462130, 10.61835464503272, 11.01717546700913, 11.28548715443447, 11.91132291734556, 12.59123106977845, 12.75176051089418, 13.17783141955715

Graph of the $Z$-function along the critical line