Properties

Label 2-14157-1.1-c1-0-15
Degree $2$
Conductor $14157$
Sign $-1$
Analytic cond. $113.044$
Root an. cond. $10.6322$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 2·5-s + 4·7-s − 3·8-s − 2·10-s − 13-s + 4·14-s − 16-s + 2·17-s + 2·20-s − 25-s − 26-s − 4·28-s − 10·29-s + 4·31-s + 5·32-s + 2·34-s − 8·35-s − 2·37-s + 6·40-s + 6·41-s + 12·43-s + 9·49-s − 50-s + 52-s − 6·53-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.894·5-s + 1.51·7-s − 1.06·8-s − 0.632·10-s − 0.277·13-s + 1.06·14-s − 1/4·16-s + 0.485·17-s + 0.447·20-s − 1/5·25-s − 0.196·26-s − 0.755·28-s − 1.85·29-s + 0.718·31-s + 0.883·32-s + 0.342·34-s − 1.35·35-s − 0.328·37-s + 0.948·40-s + 0.937·41-s + 1.82·43-s + 9/7·49-s − 0.141·50-s + 0.138·52-s − 0.824·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14157 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14157 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14157\)    =    \(3^{2} \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(113.044\)
Root analytic conductor: \(10.6322\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 14157,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
11 \( 1 \)
13 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.29233881215204, −15.64753596533844, −15.07242070959622, −14.76102497692392, −14.16627787772756, −13.81929457580130, −13.03548125702984, −12.37646953249578, −12.07633410331887, −11.26320155311943, −11.13923012328009, −10.21146835524115, −9.387585270190951, −8.914175585737838, −8.177840161459370, −7.663609664067637, −7.342291951502546, −6.079703866204255, −5.634325308991622, −4.862445839740569, −4.411942998125986, −3.877658638451044, −3.119682267210651, −2.151376949633022, −1.133250595165021, 0, 1.133250595165021, 2.151376949633022, 3.119682267210651, 3.877658638451044, 4.411942998125986, 4.862445839740569, 5.634325308991622, 6.079703866204255, 7.342291951502546, 7.663609664067637, 8.177840161459370, 8.914175585737838, 9.387585270190951, 10.21146835524115, 11.13923012328009, 11.26320155311943, 12.07633410331887, 12.37646953249578, 13.03548125702984, 13.81929457580130, 14.16627787772756, 14.76102497692392, 15.07242070959622, 15.64753596533844, 16.29233881215204

Graph of the $Z$-function along the critical line