sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(14157, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([0,0,0]))
pari:[g,chi] = znchar(Mod(1,14157))
\(\chi_{14157}(1,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((6293,3511,4357)\) → \((1,1,1)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(14\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 14157 }(1, a) \) |
\(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
sage:chi.jacobi_sum(n)