Properties

Label 2-13200-1.1-c1-0-39
Degree $2$
Conductor $13200$
Sign $-1$
Analytic cond. $105.402$
Root an. cond. $10.2665$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 11-s − 2·13-s − 6·17-s + 4·23-s − 27-s + 2·29-s + 33-s + 10·37-s + 2·39-s + 6·41-s − 8·43-s − 4·47-s − 7·49-s + 6·51-s + 6·53-s + 12·59-s + 2·61-s + 4·67-s − 4·69-s − 12·71-s + 14·73-s − 16·79-s + 81-s − 12·83-s − 2·87-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 0.301·11-s − 0.554·13-s − 1.45·17-s + 0.834·23-s − 0.192·27-s + 0.371·29-s + 0.174·33-s + 1.64·37-s + 0.320·39-s + 0.937·41-s − 1.21·43-s − 0.583·47-s − 49-s + 0.840·51-s + 0.824·53-s + 1.56·59-s + 0.256·61-s + 0.488·67-s − 0.481·69-s − 1.42·71-s + 1.63·73-s − 1.80·79-s + 1/9·81-s − 1.31·83-s − 0.214·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13200\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(105.402\)
Root analytic conductor: \(10.2665\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 13200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.44173197591392, −16.05703499579419, −15.42942837974958, −14.85081472549784, −14.42857671584835, −13.51141307827266, −13.00078655463338, −12.76923709611826, −11.82714748098699, −11.32329173991522, −11.02453419183341, −10.10131682377570, −9.811852042412011, −8.942763900355690, −8.454029019010479, −7.625350240384435, −7.032946174812028, −6.461499998621302, −5.837645896458972, −4.951183652944806, −4.631056628397896, −3.787201347757894, −2.775068453709845, −2.151489883267947, −1.020626861059094, 0, 1.020626861059094, 2.151489883267947, 2.775068453709845, 3.787201347757894, 4.631056628397896, 4.951183652944806, 5.837645896458972, 6.461499998621302, 7.032946174812028, 7.625350240384435, 8.454029019010479, 8.942763900355690, 9.811852042412011, 10.10131682377570, 11.02453419183341, 11.32329173991522, 11.82714748098699, 12.76923709611826, 13.00078655463338, 13.51141307827266, 14.42857671584835, 14.85081472549784, 15.42942837974958, 16.05703499579419, 16.44173197591392

Graph of the $Z$-function along the critical line