Properties

Label 2-131648-1.1-c1-0-19
Degree $2$
Conductor $131648$
Sign $1$
Analytic cond. $1051.21$
Root an. cond. $32.4224$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 3·7-s − 3·9-s − 4·13-s + 17-s + 3·19-s + 8·23-s + 4·25-s + 2·29-s − 3·31-s + 9·35-s + 3·37-s + 5·43-s + 9·45-s − 6·47-s + 2·49-s − 6·53-s + 3·59-s + 5·61-s + 9·63-s + 12·65-s + 4·67-s + 16·71-s + 4·73-s + 79-s + 9·81-s + 3·83-s + ⋯
L(s)  = 1  − 1.34·5-s − 1.13·7-s − 9-s − 1.10·13-s + 0.242·17-s + 0.688·19-s + 1.66·23-s + 4/5·25-s + 0.371·29-s − 0.538·31-s + 1.52·35-s + 0.493·37-s + 0.762·43-s + 1.34·45-s − 0.875·47-s + 2/7·49-s − 0.824·53-s + 0.390·59-s + 0.640·61-s + 1.13·63-s + 1.48·65-s + 0.488·67-s + 1.89·71-s + 0.468·73-s + 0.112·79-s + 81-s + 0.329·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 131648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 131648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(131648\)    =    \(2^{6} \cdot 11^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(1051.21\)
Root analytic conductor: \(32.4224\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 131648,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.107918963\)
\(L(\frac12)\) \(\approx\) \(1.107918963\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + 3 T + p T^{2} \) 1.7.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.27333726592523, −12.98711850464624, −12.34743304077758, −12.14467329596964, −11.57202512388390, −11.05748709764806, −10.83672282651068, −9.964738064149203, −9.471050593977723, −9.260989386921226, −8.505819950162968, −8.021580862090105, −7.638694032050540, −6.927753240413011, −6.790714002050617, −6.002700340672127, −5.331732316042476, −4.967076646386116, −4.306962033540461, −3.567721201077844, −3.193363994547375, −2.831389727216260, −2.079113464781044, −0.8123638389302318, −0.4370423235832342, 0.4370423235832342, 0.8123638389302318, 2.079113464781044, 2.831389727216260, 3.193363994547375, 3.567721201077844, 4.306962033540461, 4.967076646386116, 5.331732316042476, 6.002700340672127, 6.790714002050617, 6.927753240413011, 7.638694032050540, 8.021580862090105, 8.505819950162968, 9.260989386921226, 9.471050593977723, 9.964738064149203, 10.83672282651068, 11.05748709764806, 11.57202512388390, 12.14467329596964, 12.34743304077758, 12.98711850464624, 13.27333726592523

Graph of the $Z$-function along the critical line