L(s) = 1 | + 2-s + 2·3-s + 4-s − 5-s + 2·6-s − 4·7-s + 8-s + 9-s − 10-s − 2·11-s + 2·12-s − 13-s − 4·14-s − 2·15-s + 16-s + 2·17-s + 18-s + 6·19-s − 20-s − 8·21-s − 2·22-s + 6·23-s + 2·24-s + 25-s − 26-s − 4·27-s − 4·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.447·5-s + 0.816·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.603·11-s + 0.577·12-s − 0.277·13-s − 1.06·14-s − 0.516·15-s + 1/4·16-s + 0.485·17-s + 0.235·18-s + 1.37·19-s − 0.223·20-s − 1.74·21-s − 0.426·22-s + 1.25·23-s + 0.408·24-s + 1/5·25-s − 0.196·26-s − 0.769·27-s − 0.755·28-s + ⋯ |
Λ(s)=(=(130s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(130s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.773094903 |
L(21) |
≈ |
1.773094903 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) | Isogeny Class over Fp |
---|
bad | 2 | 1−T | |
| 5 | 1+T | |
| 13 | 1+T | |
good | 3 | 1−2T+pT2 | 1.3.ac |
| 7 | 1+4T+pT2 | 1.7.e |
| 11 | 1+2T+pT2 | 1.11.c |
| 17 | 1−2T+pT2 | 1.17.ac |
| 19 | 1−6T+pT2 | 1.19.ag |
| 23 | 1−6T+pT2 | 1.23.ag |
| 29 | 1−2T+pT2 | 1.29.ac |
| 31 | 1+6T+pT2 | 1.31.g |
| 37 | 1+2T+pT2 | 1.37.c |
| 41 | 1−10T+pT2 | 1.41.ak |
| 43 | 1+10T+pT2 | 1.43.k |
| 47 | 1+12T+pT2 | 1.47.m |
| 53 | 1−2T+pT2 | 1.53.ac |
| 59 | 1−10T+pT2 | 1.59.ak |
| 61 | 1−2T+pT2 | 1.61.ac |
| 67 | 1+12T+pT2 | 1.67.m |
| 71 | 1−10T+pT2 | 1.71.ak |
| 73 | 1−10T+pT2 | 1.73.ak |
| 79 | 1+4T+pT2 | 1.79.e |
| 83 | 1+pT2 | 1.83.a |
| 89 | 1+14T+pT2 | 1.89.o |
| 97 | 1−14T+pT2 | 1.97.ao |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.26679558606257756188931391942, −12.71202338625229541571828648444, −11.47889106396016028805556897933, −10.04470252993954468916012522294, −9.161137327460865013114506016469, −7.83531743824800124245932651769, −6.87551315707654393130092819540, −5.33976892050247260934145252130, −3.53009310754873249134401547682, −2.88253971705917726242541361642,
2.88253971705917726242541361642, 3.53009310754873249134401547682, 5.33976892050247260934145252130, 6.87551315707654393130092819540, 7.83531743824800124245932651769, 9.161137327460865013114506016469, 10.04470252993954468916012522294, 11.47889106396016028805556897933, 12.71202338625229541571828648444, 13.26679558606257756188931391942