Properties

Label 2-129472-1.1-c1-0-96
Degree $2$
Conductor $129472$
Sign $-1$
Analytic cond. $1033.83$
Root an. cond. $32.1533$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 2·5-s − 7-s + 6·9-s − 4·13-s + 6·15-s − 19-s − 3·21-s + 6·23-s − 25-s + 9·27-s + 3·29-s + 9·31-s − 2·35-s + 6·37-s − 12·39-s + 6·41-s − 6·43-s + 12·45-s − 47-s + 49-s − 13·53-s − 3·57-s − 7·59-s − 10·61-s − 6·63-s − 8·65-s + ⋯
L(s)  = 1  + 1.73·3-s + 0.894·5-s − 0.377·7-s + 2·9-s − 1.10·13-s + 1.54·15-s − 0.229·19-s − 0.654·21-s + 1.25·23-s − 1/5·25-s + 1.73·27-s + 0.557·29-s + 1.61·31-s − 0.338·35-s + 0.986·37-s − 1.92·39-s + 0.937·41-s − 0.914·43-s + 1.78·45-s − 0.145·47-s + 1/7·49-s − 1.78·53-s − 0.397·57-s − 0.911·59-s − 1.28·61-s − 0.755·63-s − 0.992·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 129472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(129472\)    =    \(2^{6} \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1033.83\)
Root analytic conductor: \(32.1533\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 129472,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + 13 T + p T^{2} \) 1.53.n
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.89057428063187, −13.18823899046755, −13.00488344917423, −12.59005503819042, −11.90585777412422, −11.34621831486754, −10.55490589490554, −10.09070066947978, −9.747030555648466, −9.387997049277589, −8.907639259711825, −8.458808734734964, −7.809921916734138, −7.502695880073474, −6.891525485469414, −6.337431819038989, −5.873456620846199, −4.956944515713422, −4.559529937035668, −4.064960906465904, −3.089615606363159, −2.798570613859216, −2.562679581770165, −1.624366655339772, −1.265988669390431, 0, 1.265988669390431, 1.624366655339772, 2.562679581770165, 2.798570613859216, 3.089615606363159, 4.064960906465904, 4.559529937035668, 4.956944515713422, 5.873456620846199, 6.337431819038989, 6.891525485469414, 7.502695880073474, 7.809921916734138, 8.458808734734964, 8.907639259711825, 9.387997049277589, 9.747030555648466, 10.09070066947978, 10.55490589490554, 11.34621831486754, 11.90585777412422, 12.59005503819042, 13.00488344917423, 13.18823899046755, 13.89057428063187

Graph of the $Z$-function along the critical line