Properties

Label 2-126350-1.1-c1-0-4
Degree $2$
Conductor $126350$
Sign $1$
Analytic cond. $1008.90$
Root an. cond. $31.7633$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 7-s + 8-s − 3·9-s + 4·11-s − 6·13-s + 14-s + 16-s − 2·17-s − 3·18-s + 4·22-s − 6·26-s + 28-s − 6·29-s − 8·31-s + 32-s − 2·34-s − 3·36-s − 10·37-s − 2·41-s − 4·43-s + 4·44-s − 8·47-s + 49-s − 6·52-s − 2·53-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.377·7-s + 0.353·8-s − 9-s + 1.20·11-s − 1.66·13-s + 0.267·14-s + 1/4·16-s − 0.485·17-s − 0.707·18-s + 0.852·22-s − 1.17·26-s + 0.188·28-s − 1.11·29-s − 1.43·31-s + 0.176·32-s − 0.342·34-s − 1/2·36-s − 1.64·37-s − 0.312·41-s − 0.609·43-s + 0.603·44-s − 1.16·47-s + 1/7·49-s − 0.832·52-s − 0.274·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 126350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(126350\)    =    \(2 \cdot 5^{2} \cdot 7 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(1008.90\)
Root analytic conductor: \(31.7633\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 126350,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.286470738\)
\(L(\frac12)\) \(\approx\) \(1.286470738\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
19 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.67370841310706, −12.95617464939165, −12.55094780966698, −11.95916067868648, −11.78406752308957, −11.16123729038562, −10.88726969859489, −10.12410115398561, −9.636394446124105, −9.008018086415247, −8.792704268184567, −7.974254397306508, −7.524200035500327, −6.927580372182020, −6.623645625332017, −5.876394397229312, −5.390033833532099, −4.946315321266898, −4.463951954690294, −3.664113630058706, −3.366881596218166, −2.595344481448699, −1.922629195862802, −1.577192982627870, −0.2765442847958913, 0.2765442847958913, 1.577192982627870, 1.922629195862802, 2.595344481448699, 3.366881596218166, 3.664113630058706, 4.463951954690294, 4.946315321266898, 5.390033833532099, 5.876394397229312, 6.623645625332017, 6.927580372182020, 7.524200035500327, 7.974254397306508, 8.792704268184567, 9.008018086415247, 9.636394446124105, 10.12410115398561, 10.88726969859489, 11.16123729038562, 11.78406752308957, 11.95916067868648, 12.55094780966698, 12.95617464939165, 13.67370841310706

Graph of the $Z$-function along the critical line