Properties

Label 2-123200-1.1-c1-0-94
Degree $2$
Conductor $123200$
Sign $-1$
Analytic cond. $983.756$
Root an. cond. $31.3649$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 7-s + 9-s + 11-s + 4·13-s − 4·17-s + 2·21-s − 4·23-s + 4·27-s + 6·29-s − 10·31-s − 2·33-s − 6·37-s − 8·39-s + 4·41-s − 12·43-s − 10·47-s + 49-s + 8·51-s − 6·53-s + 2·59-s − 63-s − 8·67-s + 8·69-s + 12·71-s + 8·73-s − 77-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.377·7-s + 1/3·9-s + 0.301·11-s + 1.10·13-s − 0.970·17-s + 0.436·21-s − 0.834·23-s + 0.769·27-s + 1.11·29-s − 1.79·31-s − 0.348·33-s − 0.986·37-s − 1.28·39-s + 0.624·41-s − 1.82·43-s − 1.45·47-s + 1/7·49-s + 1.12·51-s − 0.824·53-s + 0.260·59-s − 0.125·63-s − 0.977·67-s + 0.963·69-s + 1.42·71-s + 0.936·73-s − 0.113·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 123200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(123200\)    =    \(2^{6} \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(983.756\)
Root analytic conductor: \(31.3649\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 123200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
11 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.74267608839280, −13.14876635920536, −12.82141812491650, −12.26375389236192, −11.76421010491831, −11.36520949953828, −10.95738836393777, −10.53089075494458, −10.02360015150574, −9.440032749670727, −8.857018551845271, −8.436587937842144, −7.945598858069308, −7.084414550963911, −6.575522132074163, −6.422155328187809, −5.769982026032600, −5.319453902009408, −4.712751862918035, −4.185075210696150, −3.472410349630218, −3.091607546823458, −2.004997793301213, −1.582536905007839, −0.6420658748593552, 0, 0.6420658748593552, 1.582536905007839, 2.004997793301213, 3.091607546823458, 3.472410349630218, 4.185075210696150, 4.712751862918035, 5.319453902009408, 5.769982026032600, 6.422155328187809, 6.575522132074163, 7.084414550963911, 7.945598858069308, 8.436587937842144, 8.857018551845271, 9.440032749670727, 10.02360015150574, 10.53089075494458, 10.95738836393777, 11.36520949953828, 11.76421010491831, 12.26375389236192, 12.82141812491650, 13.14876635920536, 13.74267608839280

Graph of the $Z$-function along the critical line