Properties

Label 2-122694-1.1-c1-0-49
Degree $2$
Conductor $122694$
Sign $-1$
Analytic cond. $979.716$
Root an. cond. $31.3004$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 4·7-s − 8-s + 9-s + 12-s + 4·14-s + 16-s − 18-s − 4·19-s − 4·21-s − 24-s − 5·25-s + 27-s − 4·28-s + 10·31-s − 32-s + 36-s − 2·37-s + 4·38-s − 6·41-s + 4·42-s + 10·43-s + 48-s + 9·49-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 1.51·7-s − 0.353·8-s + 1/3·9-s + 0.288·12-s + 1.06·14-s + 1/4·16-s − 0.235·18-s − 0.917·19-s − 0.872·21-s − 0.204·24-s − 25-s + 0.192·27-s − 0.755·28-s + 1.79·31-s − 0.176·32-s + 1/6·36-s − 0.328·37-s + 0.648·38-s − 0.937·41-s + 0.617·42-s + 1.52·43-s + 0.144·48-s + 9/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 122694 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 122694 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(122694\)    =    \(2 \cdot 3 \cdot 11^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(979.716\)
Root analytic conductor: \(31.3004\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 122694,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
11 \( 1 \)
13 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.71979451401888, −13.25377389913865, −12.92015579259542, −12.23667403815725, −11.98694757692141, −11.34445553218618, −10.62975017477701, −10.15208163324259, −9.977293056755207, −9.393325305425493, −8.821453819625705, −8.617510546893201, −7.844918005567269, −7.503574393100444, −6.722285076212764, −6.547988089316380, −5.923221577429817, −5.421327043719245, −4.273355683350742, −4.166877137398377, −3.216850944770705, −2.905955120805301, −2.295777708336803, −1.608279446353821, −0.7163829214583452, 0, 0.7163829214583452, 1.608279446353821, 2.295777708336803, 2.905955120805301, 3.216850944770705, 4.166877137398377, 4.273355683350742, 5.421327043719245, 5.923221577429817, 6.547988089316380, 6.722285076212764, 7.503574393100444, 7.844918005567269, 8.617510546893201, 8.821453819625705, 9.393325305425493, 9.977293056755207, 10.15208163324259, 10.62975017477701, 11.34445553218618, 11.98694757692141, 12.23667403815725, 12.92015579259542, 13.25377389913865, 13.71979451401888

Graph of the $Z$-function along the critical line