Properties

Label 2-121680-1.1-c1-0-17
Degree $2$
Conductor $121680$
Sign $1$
Analytic cond. $971.619$
Root an. cond. $31.1708$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 4·7-s + 6·17-s − 4·19-s + 6·23-s + 25-s + 6·29-s − 10·31-s + 4·35-s + 10·37-s − 6·41-s + 4·43-s − 12·47-s + 9·49-s − 12·53-s + 12·59-s − 10·61-s + 14·67-s + 16·73-s − 8·79-s − 12·83-s − 6·85-s + 6·89-s + 4·95-s − 8·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.51·7-s + 1.45·17-s − 0.917·19-s + 1.25·23-s + 1/5·25-s + 1.11·29-s − 1.79·31-s + 0.676·35-s + 1.64·37-s − 0.937·41-s + 0.609·43-s − 1.75·47-s + 9/7·49-s − 1.64·53-s + 1.56·59-s − 1.28·61-s + 1.71·67-s + 1.87·73-s − 0.900·79-s − 1.31·83-s − 0.650·85-s + 0.635·89-s + 0.410·95-s − 0.812·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(121680\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(971.619\)
Root analytic conductor: \(31.1708\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 121680,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.332063499\)
\(L(\frac12)\) \(\approx\) \(1.332063499\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.33583948539757, −12.94253862392979, −12.63346180247773, −12.34335086158927, −11.59367554539286, −11.09225345355810, −10.71633987436577, −10.01542599990411, −9.618863173208560, −9.366259255384829, −8.572955355296569, −8.178533064043448, −7.613239762416501, −6.950237316553925, −6.662817461296170, −6.106837276914478, −5.526272723830802, −4.960575145604299, −4.299930047122071, −3.639697238143752, −3.194859281147814, −2.845026893847636, −1.949762167711729, −1.070202129141691, −0.3979767400199660, 0.3979767400199660, 1.070202129141691, 1.949762167711729, 2.845026893847636, 3.194859281147814, 3.639697238143752, 4.299930047122071, 4.960575145604299, 5.526272723830802, 6.106837276914478, 6.662817461296170, 6.950237316553925, 7.613239762416501, 8.178533064043448, 8.572955355296569, 9.366259255384829, 9.618863173208560, 10.01542599990411, 10.71633987436577, 11.09225345355810, 11.59367554539286, 12.34335086158927, 12.63346180247773, 12.94253862392979, 13.33583948539757

Graph of the $Z$-function along the critical line