Properties

Label 2-116160-1.1-c1-0-164
Degree $2$
Conductor $116160$
Sign $-1$
Analytic cond. $927.542$
Root an. cond. $30.4555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 9-s − 2·13-s − 15-s + 6·17-s − 4·19-s + 25-s + 27-s + 6·29-s − 8·31-s − 6·37-s − 2·39-s − 10·41-s − 4·43-s − 45-s − 8·47-s − 7·49-s + 6·51-s + 10·53-s − 4·57-s + 12·59-s + 6·61-s + 2·65-s + 4·67-s + 14·73-s + 75-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1/3·9-s − 0.554·13-s − 0.258·15-s + 1.45·17-s − 0.917·19-s + 1/5·25-s + 0.192·27-s + 1.11·29-s − 1.43·31-s − 0.986·37-s − 0.320·39-s − 1.56·41-s − 0.609·43-s − 0.149·45-s − 1.16·47-s − 49-s + 0.840·51-s + 1.37·53-s − 0.529·57-s + 1.56·59-s + 0.768·61-s + 0.248·65-s + 0.488·67-s + 1.63·73-s + 0.115·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116160\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(927.542\)
Root analytic conductor: \(30.4555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 116160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
11 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.82556598821702, −13.46103202423126, −12.68705629035348, −12.52671184631299, −11.97623179419313, −11.48886551804673, −10.90863639651064, −10.32527120700147, −9.842972559172431, −9.649062932223242, −8.671444576689166, −8.432117051912799, −8.077131436456311, −7.371340036854000, −6.888587559855428, −6.584534617222940, −5.629586505905143, −5.193799616305921, −4.715649807024747, −3.913961566543526, −3.496055722812906, −3.056390323628194, −2.207091667432939, −1.733569856380140, −0.8634571254585899, 0, 0.8634571254585899, 1.733569856380140, 2.207091667432939, 3.056390323628194, 3.496055722812906, 3.913961566543526, 4.715649807024747, 5.193799616305921, 5.629586505905143, 6.584534617222940, 6.888587559855428, 7.371340036854000, 8.077131436456311, 8.432117051912799, 8.671444576689166, 9.649062932223242, 9.842972559172431, 10.32527120700147, 10.90863639651064, 11.48886551804673, 11.97623179419313, 12.52671184631299, 12.68705629035348, 13.46103202423126, 13.82556598821702

Graph of the $Z$-function along the critical line