Properties

Label 2-11466-1.1-c1-0-0
Degree $2$
Conductor $11466$
Sign $1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 8-s + 10-s − 5·11-s + 13-s + 16-s − 3·17-s + 19-s − 20-s + 5·22-s − 3·23-s − 4·25-s − 26-s − 9·29-s − 4·31-s − 32-s + 3·34-s − 11·37-s − 38-s + 40-s − 5·43-s − 5·44-s + 3·46-s − 8·47-s + 4·50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s + 0.316·10-s − 1.50·11-s + 0.277·13-s + 1/4·16-s − 0.727·17-s + 0.229·19-s − 0.223·20-s + 1.06·22-s − 0.625·23-s − 4/5·25-s − 0.196·26-s − 1.67·29-s − 0.718·31-s − 0.176·32-s + 0.514·34-s − 1.80·37-s − 0.162·38-s + 0.158·40-s − 0.762·43-s − 0.753·44-s + 0.442·46-s − 1.16·47-s + 0.565·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3331336457\)
\(L(\frac12)\) \(\approx\) \(0.3331336457\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 15 T + p T^{2} \) 1.61.ap
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.20263860351110, −16.02760519824951, −15.46034320855662, −14.96875520717892, −14.24836431155714, −13.38923686616624, −13.09430702159273, −12.40601697474404, −11.56716584634695, −11.29512068430796, −10.56217948200760, −10.08187724139811, −9.469308811930295, −8.645432877164782, −8.256414417694115, −7.553190592959670, −7.156964974796266, −6.311173935233802, −5.483709014651115, −5.044464728232113, −3.889354199365660, −3.386069913994935, −2.304436416253823, −1.765032339268031, −0.2795961366953430, 0.2795961366953430, 1.765032339268031, 2.304436416253823, 3.386069913994935, 3.889354199365660, 5.044464728232113, 5.483709014651115, 6.311173935233802, 7.156964974796266, 7.553190592959670, 8.256414417694115, 8.645432877164782, 9.469308811930295, 10.08187724139811, 10.56217948200760, 11.29512068430796, 11.56716584634695, 12.40601697474404, 13.09430702159273, 13.38923686616624, 14.24836431155714, 14.96875520717892, 15.46034320855662, 16.02760519824951, 16.20263860351110

Graph of the $Z$-function along the critical line