| L(s)  = 1 | + 2-s   − 3-s   + 4-s   − 2·5-s   − 6-s     + 8-s   + 9-s   − 2·10-s   − 11-s   − 12-s   − 2·13-s     + 2·15-s   + 16-s   − 4·17-s   + 18-s   − 4·19-s   − 2·20-s     − 22-s   + 6·23-s   − 24-s   − 25-s   − 2·26-s   − 27-s     − 4·29-s   + 2·30-s   + 4·31-s   + 32-s  + ⋯ | 
| L(s)  = 1 | + 0.707·2-s   − 0.577·3-s   + 1/2·4-s   − 0.894·5-s   − 0.408·6-s     + 0.353·8-s   + 1/3·9-s   − 0.632·10-s   − 0.301·11-s   − 0.288·12-s   − 0.554·13-s     + 0.516·15-s   + 1/4·16-s   − 0.970·17-s   + 0.235·18-s   − 0.917·19-s   − 0.447·20-s     − 0.213·22-s   + 1.25·23-s   − 0.204·24-s   − 1/5·25-s   − 0.392·26-s   − 0.192·27-s     − 0.742·29-s   + 0.365·30-s   + 0.718·31-s   + 0.176·32-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 110946 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110946 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 - T \) |  | 
|  | 3 | \( 1 + T \) |  | 
|  | 11 | \( 1 + T \) |  | 
|  | 41 | \( 1 \) |  | 
| good | 5 | \( 1 + 2 T + p T^{2} \) | 1.5.c | 
|  | 7 | \( 1 + p T^{2} \) | 1.7.a | 
|  | 13 | \( 1 + 2 T + p T^{2} \) | 1.13.c | 
|  | 17 | \( 1 + 4 T + p T^{2} \) | 1.17.e | 
|  | 19 | \( 1 + 4 T + p T^{2} \) | 1.19.e | 
|  | 23 | \( 1 - 6 T + p T^{2} \) | 1.23.ag | 
|  | 29 | \( 1 + 4 T + p T^{2} \) | 1.29.e | 
|  | 31 | \( 1 - 4 T + p T^{2} \) | 1.31.ae | 
|  | 37 | \( 1 + 2 T + p T^{2} \) | 1.37.c | 
|  | 43 | \( 1 + 6 T + p T^{2} \) | 1.43.g | 
|  | 47 | \( 1 + p T^{2} \) | 1.47.a | 
|  | 53 | \( 1 + 6 T + p T^{2} \) | 1.53.g | 
|  | 59 | \( 1 + 10 T + p T^{2} \) | 1.59.k | 
|  | 61 | \( 1 + 14 T + p T^{2} \) | 1.61.o | 
|  | 67 | \( 1 + p T^{2} \) | 1.67.a | 
|  | 71 | \( 1 + 16 T + p T^{2} \) | 1.71.q | 
|  | 73 | \( 1 + 6 T + p T^{2} \) | 1.73.g | 
|  | 79 | \( 1 + p T^{2} \) | 1.79.a | 
|  | 83 | \( 1 + p T^{2} \) | 1.83.a | 
|  | 89 | \( 1 + 14 T + p T^{2} \) | 1.89.o | 
|  | 97 | \( 1 + 8 T + p T^{2} \) | 1.97.i | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−14.02992154984936, −13.57178470829242, −13.06841268647931, −12.61203581518827, −12.31866046705075, −11.62032083143960, −11.32235512068526, −10.95951698474710, −10.37965751611408, −9.934234691578096, −9.096374730362575, −8.777786837084450, −7.922598235399074, −7.668466550841951, −7.036795019912079, −6.544052624895389, −6.154751892233313, −5.382793778922116, −4.906442785885257, −4.363185639593088, −4.136169468243656, −3.138646975501830, −2.888833529836203, −1.928196205567341, −1.364573931008364, 0, 0, 
1.364573931008364, 1.928196205567341, 2.888833529836203, 3.138646975501830, 4.136169468243656, 4.363185639593088, 4.906442785885257, 5.382793778922116, 6.154751892233313, 6.544052624895389, 7.036795019912079, 7.668466550841951, 7.922598235399074, 8.777786837084450, 9.096374730362575, 9.934234691578096, 10.37965751611408, 10.95951698474710, 11.32235512068526, 11.62032083143960, 12.31866046705075, 12.61203581518827, 13.06841268647931, 13.57178470829242, 14.02992154984936
