Properties

Label 2-110946-1.1-c1-0-39
Degree $2$
Conductor $110946$
Sign $1$
Analytic cond. $885.908$
Root an. cond. $29.7642$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 2·5-s − 6-s + 8-s + 9-s − 2·10-s − 11-s − 12-s − 2·13-s + 2·15-s + 16-s − 4·17-s + 18-s − 4·19-s − 2·20-s − 22-s + 6·23-s − 24-s − 25-s − 2·26-s − 27-s − 4·29-s + 2·30-s + 4·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.894·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.632·10-s − 0.301·11-s − 0.288·12-s − 0.554·13-s + 0.516·15-s + 1/4·16-s − 0.970·17-s + 0.235·18-s − 0.917·19-s − 0.447·20-s − 0.213·22-s + 1.25·23-s − 0.204·24-s − 1/5·25-s − 0.392·26-s − 0.192·27-s − 0.742·29-s + 0.365·30-s + 0.718·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110946 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110946 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110946\)    =    \(2 \cdot 3 \cdot 11 \cdot 41^{2}\)
Sign: $1$
Analytic conductor: \(885.908\)
Root analytic conductor: \(29.7642\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 110946,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
11 \( 1 + T \)
41 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.02992154984936, −13.57178470829242, −13.06841268647931, −12.61203581518827, −12.31866046705075, −11.62032083143960, −11.32235512068526, −10.95951698474710, −10.37965751611408, −9.934234691578096, −9.096374730362575, −8.777786837084450, −7.922598235399074, −7.668466550841951, −7.036795019912079, −6.544052624895389, −6.154751892233313, −5.382793778922116, −4.906442785885257, −4.363185639593088, −4.136169468243656, −3.138646975501830, −2.888833529836203, −1.928196205567341, −1.364573931008364, 0, 0, 1.364573931008364, 1.928196205567341, 2.888833529836203, 3.138646975501830, 4.136169468243656, 4.363185639593088, 4.906442785885257, 5.382793778922116, 6.154751892233313, 6.544052624895389, 7.036795019912079, 7.668466550841951, 7.922598235399074, 8.777786837084450, 9.096374730362575, 9.934234691578096, 10.37965751611408, 10.95951698474710, 11.32235512068526, 11.62032083143960, 12.31866046705075, 12.61203581518827, 13.06841268647931, 13.57178470829242, 14.02992154984936

Graph of the $Z$-function along the critical line