Properties

Label 2-110946-1.1-c1-0-35
Degree $2$
Conductor $110946$
Sign $-1$
Analytic cond. $885.908$
Root an. cond. $29.7642$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 2·7-s + 8-s + 9-s − 11-s + 12-s − 2·13-s + 2·14-s + 16-s + 6·17-s + 18-s + 2·21-s − 22-s − 4·23-s + 24-s − 5·25-s − 2·26-s + 27-s + 2·28-s − 2·29-s − 8·31-s + 32-s − 33-s + 6·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.755·7-s + 0.353·8-s + 1/3·9-s − 0.301·11-s + 0.288·12-s − 0.554·13-s + 0.534·14-s + 1/4·16-s + 1.45·17-s + 0.235·18-s + 0.436·21-s − 0.213·22-s − 0.834·23-s + 0.204·24-s − 25-s − 0.392·26-s + 0.192·27-s + 0.377·28-s − 0.371·29-s − 1.43·31-s + 0.176·32-s − 0.174·33-s + 1.02·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110946 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110946 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110946\)    =    \(2 \cdot 3 \cdot 11 \cdot 41^{2}\)
Sign: $-1$
Analytic conductor: \(885.908\)
Root analytic conductor: \(29.7642\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 110946,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
11 \( 1 + T \)
41 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.00241340406600, −13.50325074032404, −12.87981581177202, −12.53753519468169, −12.02057930648537, −11.55892668881890, −11.09759910514984, −10.40988607540399, −10.07983176262021, −9.483764034134929, −9.023563961177192, −8.208082069354267, −7.859573683782530, −7.501626608395888, −7.047242738454330, −6.181868987484996, −5.631357492401854, −5.339691370542377, −4.602505146474994, −4.141216505211474, −3.478339346438037, −3.098558673503377, −2.176627741991116, −1.897150844281683, −1.128040188796757, 0, 1.128040188796757, 1.897150844281683, 2.176627741991116, 3.098558673503377, 3.478339346438037, 4.141216505211474, 4.602505146474994, 5.339691370542377, 5.631357492401854, 6.181868987484996, 7.047242738454330, 7.501626608395888, 7.859573683782530, 8.208082069354267, 9.023563961177192, 9.483764034134929, 10.07983176262021, 10.40988607540399, 11.09759910514984, 11.55892668881890, 12.02057930648537, 12.53753519468169, 12.87981581177202, 13.50325074032404, 14.00241340406600

Graph of the $Z$-function along the critical line