Properties

Label 2-109200-1.1-c1-0-49
Degree $2$
Conductor $109200$
Sign $1$
Analytic cond. $871.966$
Root an. cond. $29.5290$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s − 13-s + 4·19-s + 21-s − 6·23-s + 27-s − 6·29-s + 4·31-s − 2·37-s − 39-s − 6·41-s + 8·43-s + 6·47-s + 49-s + 6·53-s + 4·57-s + 6·59-s − 10·61-s + 63-s − 4·67-s − 6·69-s + 12·71-s + 10·73-s − 8·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.277·13-s + 0.917·19-s + 0.218·21-s − 1.25·23-s + 0.192·27-s − 1.11·29-s + 0.718·31-s − 0.328·37-s − 0.160·39-s − 0.937·41-s + 1.21·43-s + 0.875·47-s + 1/7·49-s + 0.824·53-s + 0.529·57-s + 0.781·59-s − 1.28·61-s + 0.125·63-s − 0.488·67-s − 0.722·69-s + 1.42·71-s + 1.17·73-s − 0.900·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 109200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 109200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(109200\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(871.966\)
Root analytic conductor: \(29.5290\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 109200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.102197989\)
\(L(\frac12)\) \(\approx\) \(3.102197989\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
13 \( 1 + T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.82187457188943, −13.33860004709540, −12.65429121190057, −12.15201898080073, −11.85617086439206, −11.24393602891880, −10.67269809120763, −10.20324457733566, −9.669315001034185, −9.266985719979514, −8.721349107197045, −8.156718782482599, −7.697957184382760, −7.338211397113307, −6.706892271560900, −6.067557113915590, −5.466400481893954, −5.045141154005686, −4.257104618412017, −3.865121205926997, −3.252502949839358, −2.518392465091416, −2.045932770024718, −1.341959442205734, −0.5294553902532334, 0.5294553902532334, 1.341959442205734, 2.045932770024718, 2.518392465091416, 3.252502949839358, 3.865121205926997, 4.257104618412017, 5.045141154005686, 5.466400481893954, 6.067557113915590, 6.706892271560900, 7.338211397113307, 7.697957184382760, 8.156718782482599, 8.721349107197045, 9.266985719979514, 9.669315001034185, 10.20324457733566, 10.67269809120763, 11.24393602891880, 11.85617086439206, 12.15201898080073, 12.65429121190057, 13.33860004709540, 13.82187457188943

Graph of the $Z$-function along the critical line