Properties

Label 2-10710-1.1-c1-0-38
Degree $2$
Conductor $10710$
Sign $-1$
Analytic cond. $85.5197$
Root an. cond. $9.24769$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 7-s + 8-s + 10-s − 2·11-s + 14-s + 16-s − 17-s − 6·19-s + 20-s − 2·22-s + 25-s + 28-s + 32-s − 34-s + 35-s − 8·37-s − 6·38-s + 40-s − 6·41-s − 12·43-s − 2·44-s + 4·47-s + 49-s + 50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s + 0.353·8-s + 0.316·10-s − 0.603·11-s + 0.267·14-s + 1/4·16-s − 0.242·17-s − 1.37·19-s + 0.223·20-s − 0.426·22-s + 1/5·25-s + 0.188·28-s + 0.176·32-s − 0.171·34-s + 0.169·35-s − 1.31·37-s − 0.973·38-s + 0.158·40-s − 0.937·41-s − 1.82·43-s − 0.301·44-s + 0.583·47-s + 1/7·49-s + 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10710 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10710\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(85.5197\)
Root analytic conductor: \(9.24769\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10710,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 + T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.86346131486438, −16.20489164651376, −15.50108921079080, −15.02541798620612, −14.64852135273440, −13.77668244355863, −13.48274952259801, −12.94138807470506, −12.22300939291525, −11.80304414867102, −10.96443959713718, −10.48002002156851, −10.08575230977257, −9.068365913775920, −8.523343240994656, −7.908156008177674, −7.051581787786150, −6.552832023115394, −5.829472594232651, −5.149795795675348, −4.636726749524019, −3.826866408131391, −3.002930845692430, −2.175500639328194, −1.547874938738485, 0, 1.547874938738485, 2.175500639328194, 3.002930845692430, 3.826866408131391, 4.636726749524019, 5.149795795675348, 5.829472594232651, 6.552832023115394, 7.051581787786150, 7.908156008177674, 8.523343240994656, 9.068365913775920, 10.08575230977257, 10.48002002156851, 10.96443959713718, 11.80304414867102, 12.22300939291525, 12.94138807470506, 13.48274952259801, 13.77668244355863, 14.64852135273440, 15.02541798620612, 15.50108921079080, 16.20489164651376, 16.86346131486438

Graph of the $Z$-function along the critical line