Properties

Label 2-106470-1.1-c1-0-142
Degree $2$
Conductor $106470$
Sign $-1$
Analytic cond. $850.167$
Root an. cond. $29.1576$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s − 7-s + 8-s − 10-s − 14-s + 16-s + 6·17-s + 4·19-s − 20-s + 25-s − 28-s + 6·29-s + 4·31-s + 32-s + 6·34-s + 35-s − 2·37-s + 4·38-s − 40-s + 6·41-s + 8·43-s − 12·47-s + 49-s + 50-s − 6·53-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.377·7-s + 0.353·8-s − 0.316·10-s − 0.267·14-s + 1/4·16-s + 1.45·17-s + 0.917·19-s − 0.223·20-s + 1/5·25-s − 0.188·28-s + 1.11·29-s + 0.718·31-s + 0.176·32-s + 1.02·34-s + 0.169·35-s − 0.328·37-s + 0.648·38-s − 0.158·40-s + 0.937·41-s + 1.21·43-s − 1.75·47-s + 1/7·49-s + 0.141·50-s − 0.824·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(106470\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(850.167\)
Root analytic conductor: \(29.1576\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 106470,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.07488958261698, −13.37384064269369, −13.03334803731372, −12.31093653276764, −12.11218926344957, −11.71579021803968, −11.10629673206171, −10.45318801135022, −10.21859432616815, −9.399204354312224, −9.232532968911253, −8.185991873312269, −7.941347889774111, −7.467220236806236, −6.789758929236968, −6.385027378271348, −5.673053576571916, −5.381333624346202, −4.558370027884461, −4.266922757241584, −3.430637091925425, −3.016676384359119, −2.658788306179820, −1.468460648140388, −1.080706558588881, 0, 1.080706558588881, 1.468460648140388, 2.658788306179820, 3.016676384359119, 3.430637091925425, 4.266922757241584, 4.558370027884461, 5.381333624346202, 5.673053576571916, 6.385027378271348, 6.789758929236968, 7.467220236806236, 7.941347889774111, 8.185991873312269, 9.232532968911253, 9.399204354312224, 10.21859432616815, 10.45318801135022, 11.10629673206171, 11.71579021803968, 12.11218926344957, 12.31093653276764, 13.03334803731372, 13.37384064269369, 14.07488958261698

Graph of the $Z$-function along the critical line