Properties

Label 2-106128-1.1-c1-0-42
Degree $2$
Conductor $106128$
Sign $-1$
Analytic cond. $847.436$
Root an. cond. $29.1107$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11-s + 4·13-s + 2·17-s + 6·19-s − 2·23-s − 5·25-s − 10·29-s + 8·31-s + 2·37-s + 6·41-s + 8·43-s + 6·47-s − 7·49-s + 4·53-s − 6·59-s − 12·61-s − 67-s + 14·71-s − 10·73-s − 16·79-s + 4·83-s + 14·89-s − 14·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.301·11-s + 1.10·13-s + 0.485·17-s + 1.37·19-s − 0.417·23-s − 25-s − 1.85·29-s + 1.43·31-s + 0.328·37-s + 0.937·41-s + 1.21·43-s + 0.875·47-s − 49-s + 0.549·53-s − 0.781·59-s − 1.53·61-s − 0.122·67-s + 1.66·71-s − 1.17·73-s − 1.80·79-s + 0.439·83-s + 1.48·89-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 106128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 106128 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(106128\)    =    \(2^{4} \cdot 3^{2} \cdot 11 \cdot 67\)
Sign: $-1$
Analytic conductor: \(847.436\)
Root analytic conductor: \(29.1107\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 106128,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
67 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 12 T + p T^{2} \) 1.61.m
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.81980175095254, −13.49648834857967, −13.12631166245013, −12.33109758305356, −12.07223471205926, −11.46627490750112, −10.99118022993783, −10.65208135753146, −9.885580089930570, −9.496199687126044, −9.167649347126652, −8.385889935584468, −7.862878736387690, −7.601997425466206, −7.000428685719397, −6.199355159004615, −5.738862174244959, −5.555263445674192, −4.625920406876524, −4.094172007703154, −3.562957716954866, −2.970604476072904, −2.332002330386410, −1.476294779816296, −0.9919211064175370, 0, 0.9919211064175370, 1.476294779816296, 2.332002330386410, 2.970604476072904, 3.562957716954866, 4.094172007703154, 4.625920406876524, 5.555263445674192, 5.738862174244959, 6.199355159004615, 7.000428685719397, 7.601997425466206, 7.862878736387690, 8.385889935584468, 9.167649347126652, 9.496199687126044, 9.885580089930570, 10.65208135753146, 10.99118022993783, 11.46627490750112, 12.07223471205926, 12.33109758305356, 13.12631166245013, 13.49648834857967, 13.81980175095254

Graph of the $Z$-function along the critical line