L(s) = 1 | + 2-s + 3-s + 4-s + 6-s + 4·7-s + 8-s + 9-s + 12-s + 4·14-s + 16-s + 18-s + 4·21-s + 24-s + 2·25-s + 27-s + 4·28-s + 8·29-s + 32-s + 36-s + 4·41-s + 4·42-s + 48-s + 2·49-s + 2·50-s − 8·53-s + 54-s + 4·56-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 1.51·7-s + 0.353·8-s + 1/3·9-s + 0.288·12-s + 1.06·14-s + 1/4·16-s + 0.235·18-s + 0.872·21-s + 0.204·24-s + 2/5·25-s + 0.192·27-s + 0.755·28-s + 1.48·29-s + 0.176·32-s + 1/6·36-s + 0.624·41-s + 0.617·42-s + 0.144·48-s + 2/7·49-s + 0.282·50-s − 1.09·53-s + 0.136·54-s + 0.534·56-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(5.120570026\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.120570026\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.213176759407349223846302287247, −7.903515134467079017839607534929, −7.67985780715341857454887866247, −6.97913361706962360137572896255, −6.62143874452648023979437937915, −6.09591432610903485406091342692, −5.49638547464841196078038222746, −5.01386340464067758455764263076, −4.52503456969604986414475524291, −4.36094897771292699704338322525, −3.53117369453153991020843668195, −3.00321613762990854888550128192, −2.40698180480353018569953253624, −1.74940504682165948024740002536, −1.09888824540654339078840468411,
1.09888824540654339078840468411, 1.74940504682165948024740002536, 2.40698180480353018569953253624, 3.00321613762990854888550128192, 3.53117369453153991020843668195, 4.36094897771292699704338322525, 4.52503456969604986414475524291, 5.01386340464067758455764263076, 5.49638547464841196078038222746, 6.09591432610903485406091342692, 6.62143874452648023979437937915, 6.97913361706962360137572896255, 7.67985780715341857454887866247, 7.903515134467079017839607534929, 8.213176759407349223846302287247