L(s) = 1 | − 8·5-s + 7-s + 9-s + 4·11-s + 12·13-s + 38·25-s − 8·35-s − 8·43-s − 8·45-s − 24·47-s + 49-s − 32·55-s − 12·61-s + 63-s − 96·65-s − 16·67-s + 4·77-s + 81-s + 12·91-s + 4·99-s − 32·101-s + 32·103-s + 36·107-s + 20·113-s + 12·117-s − 10·121-s − 136·125-s + ⋯ |
L(s) = 1 | − 3.57·5-s + 0.377·7-s + 1/3·9-s + 1.20·11-s + 3.32·13-s + 38/5·25-s − 1.35·35-s − 1.21·43-s − 1.19·45-s − 3.50·47-s + 1/7·49-s − 4.31·55-s − 1.53·61-s + 0.125·63-s − 11.9·65-s − 1.95·67-s + 0.455·77-s + 1/9·81-s + 1.25·91-s + 0.402·99-s − 3.18·101-s + 3.15·103-s + 3.48·107-s + 1.88·113-s + 1.10·117-s − 0.909·121-s − 12.1·125-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 790272 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 790272 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.077019225803717160884657215512, −7.60223474880564606977081998284, −7.38098041713554163025681861500, −6.71904731089565107044366408623, −6.34426698354997241941479748412, −6.06005190178770786910792401163, −4.87924854330324804890540113594, −4.63727069209135735412974054920, −4.16294073318355495294659943220, −3.65675458100353588864150742280, −3.37164547236104444198213794231, −3.30231377364451302978573657716, −1.46098811340915255187875146402, −1.14653761218391715748516515519, 0,
1.14653761218391715748516515519, 1.46098811340915255187875146402, 3.30231377364451302978573657716, 3.37164547236104444198213794231, 3.65675458100353588864150742280, 4.16294073318355495294659943220, 4.63727069209135735412974054920, 4.87924854330324804890540113594, 6.06005190178770786910792401163, 6.34426698354997241941479748412, 6.71904731089565107044366408623, 7.38098041713554163025681861500, 7.60223474880564606977081998284, 8.077019225803717160884657215512