L(s) = 1 | − 5-s − 5·9-s − 5·11-s − 4·16-s − 4·25-s + 31-s + 3·41-s + 5·45-s + 5·49-s + 5·55-s + 5·59-s − 20·61-s − 71-s − 5·79-s + 4·80-s + 16·81-s + 20·89-s + 25·99-s + 4·101-s + 10·109-s − 121-s + 9·125-s + 127-s + 131-s + 137-s + 139-s + 20·144-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 5/3·9-s − 1.50·11-s − 16-s − 4/5·25-s + 0.179·31-s + 0.468·41-s + 0.745·45-s + 5/7·49-s + 0.674·55-s + 0.650·59-s − 2.56·61-s − 0.118·71-s − 0.562·79-s + 0.447·80-s + 16/9·81-s + 2.11·89-s + 2.51·99-s + 0.398·101-s + 0.957·109-s − 0.0909·121-s + 0.804·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5/3·144-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 24025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49531050357516260305943060702, −10.04932007407217166263027352722, −9.158437888058015058882604823736, −8.883398855474776663154500905999, −8.261039098680368079704847747004, −7.70591290018467291375900181263, −7.39686422093544926567567527641, −6.35230861097195661660111035305, −5.94157911424031664187917838550, −5.22860448473015629426720465022, −4.71227256176263371685409066144, −3.75664551448942402655286428047, −2.87877559651773673301788270026, −2.31956228278278751748382753816, 0,
2.31956228278278751748382753816, 2.87877559651773673301788270026, 3.75664551448942402655286428047, 4.71227256176263371685409066144, 5.22860448473015629426720465022, 5.94157911424031664187917838550, 6.35230861097195661660111035305, 7.39686422093544926567567527641, 7.70591290018467291375900181263, 8.261039098680368079704847747004, 8.883398855474776663154500905999, 9.158437888058015058882604823736, 10.04932007407217166263027352722, 10.49531050357516260305943060702