Properties

Label 2.13.a_p
Base field $\F_{13}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{13}$
Dimension:  $2$
L-polynomial:  $1 + 15 x^{2} + 169 x^{4}$
Frobenius angles:  $\pm0.347873383291$, $\pm0.652126616709$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{11}, \sqrt{-41})\)
Galois group:  $C_2^2$
Jacobians:  $21$
Isomorphism classes:  24

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $185$ $34225$ $4822580$ $822255625$ $137858541425$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $14$ $200$ $2198$ $28788$ $371294$ $4818350$ $62748518$ $815819428$ $10604499374$ $137858591000$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 21 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{13^{2}}$.

Endomorphism algebra over $\F_{13}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{11}, \sqrt{-41})\).
Endomorphism algebra over $\overline{\F}_{13}$
The base change of $A$ to $\F_{13^{2}}$ is 1.169.p 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-451}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.13.a_ap$4$(not in LMFDB)