Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 15 x + 89 x^{2} )( 1 - 5 x + 89 x^{2} )$ |
$1 - 20 x + 253 x^{2} - 1780 x^{3} + 7921 x^{4}$ | |
Frobenius angles: | $\pm0.207471636293$, $\pm0.414628214971$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $165$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6375$ | $63590625$ | $498280608000$ | $3936969422465625$ | $31181736113307159375$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $70$ | $8028$ | $706810$ | $62748308$ | $5584062350$ | $496982249838$ | $44231349562190$ | $3936588813552868$ | $350356401837664330$ | $31181719909094915148$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 165 curves (of which all are hyperelliptic):
- $y^2=4 x^6+45 x^5+50 x^4+8 x^3+40 x^2+19 x+42$
- $y^2=25 x^6+25 x^5+13 x^4+49 x^3+58 x^2+32 x+55$
- $y^2=48 x^6+16 x^5+52 x^4+7 x^3+88 x^2+8 x+78$
- $y^2=60 x^6+10 x^5+14 x^4+61 x^3+14 x^2+10 x+60$
- $y^2=82 x^6+53 x^5+22 x^4+88 x^3+50 x^2+55 x+63$
- $y^2=31 x^6+13 x^5+82 x^4+52 x^3+79 x^2+4 x+57$
- $y^2=70 x^6+59 x^5+27 x^4+53 x^3+27 x^2+59 x+70$
- $y^2=44 x^6+7 x^5+58 x^4+30 x^3+52 x^2+21 x+54$
- $y^2=15 x^6+32 x^5+25 x^4+62 x^3+4 x^2+70 x+38$
- $y^2=63 x^6+79 x^5+28 x^4+81 x^3+42 x^2+10 x+24$
- $y^2=70 x^6+5 x^5+59 x^4+69 x^3+59 x^2+5 x+70$
- $y^2=24 x^6+54 x^5+5 x^4+37 x^3+26 x^2+38 x+27$
- $y^2=15 x^6+57 x^5+59 x^4+55 x^3+2 x^2+68 x+12$
- $y^2=11 x^6+82 x^5+4 x^4+79 x^3+68 x^2+50 x+74$
- $y^2=62 x^6+53 x^5+72 x^4+44 x^3+81 x^2+41 x+63$
- $y^2=35 x^6+35 x^5+68 x^4+53 x^3+43 x^2+37 x+20$
- $y^2=54 x^6+67 x^4+63 x^3+85 x^2+61 x+38$
- $y^2=66 x^6+47 x^5+41 x^4+48 x^3+75 x+75$
- $y^2=22 x^6+28 x^5+60 x^4+27 x^3+21 x^2+45 x+58$
- $y^2=79 x^6+13 x^5+29 x^4+59 x^2+74 x+60$
- and 145 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The isogeny class factors as 1.89.ap $\times$ 1.89.af and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.ak_dz | $2$ | (not in LMFDB) |
2.89.k_dz | $2$ | (not in LMFDB) |
2.89.u_jt | $2$ | (not in LMFDB) |