# Stored data for abelian variety isogeny class 2.89.au_jt, downloaded from the LMFDB on 09 October 2025. {"abvar_count": 6375, "abvar_counts": [6375, 63590625, 498280608000, 3936969422465625, 31181736113307159375, 246990880109633587200000, 1956411635366505315951567375, 15496731456084256472809714715625, 122749608963738637961490079730592000, 972299657140048250590000814007556640625], "abvar_counts_str": "6375 63590625 498280608000 3936969422465625 31181736113307159375 246990880109633587200000 1956411635366505315951567375 15496731456084256472809714715625 122749608963738637961490079730592000 972299657140048250590000814007556640625 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.207471636293264, 0.414628214971121], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 70, "curve_counts": [70, 8028, 706810, 62748308, 5584062350, 496982249838, 44231349562190, 3936588813552868, 350356401837664330, 31181719909094915148], "curve_counts_str": "70 8028 706810 62748308 5584062350 496982249838 44231349562190 3936588813552868 350356401837664330 31181719909094915148 ", "curves": ["y^2=4*x^6+45*x^5+50*x^4+8*x^3+40*x^2+19*x+42", "y^2=25*x^6+25*x^5+13*x^4+49*x^3+58*x^2+32*x+55", "y^2=48*x^6+16*x^5+52*x^4+7*x^3+88*x^2+8*x+78", "y^2=60*x^6+10*x^5+14*x^4+61*x^3+14*x^2+10*x+60", "y^2=82*x^6+53*x^5+22*x^4+88*x^3+50*x^2+55*x+63", "y^2=31*x^6+13*x^5+82*x^4+52*x^3+79*x^2+4*x+57", "y^2=70*x^6+59*x^5+27*x^4+53*x^3+27*x^2+59*x+70", "y^2=44*x^6+7*x^5+58*x^4+30*x^3+52*x^2+21*x+54", "y^2=15*x^6+32*x^5+25*x^4+62*x^3+4*x^2+70*x+38", "y^2=63*x^6+79*x^5+28*x^4+81*x^3+42*x^2+10*x+24", "y^2=70*x^6+5*x^5+59*x^4+69*x^3+59*x^2+5*x+70", "y^2=24*x^6+54*x^5+5*x^4+37*x^3+26*x^2+38*x+27", "y^2=15*x^6+57*x^5+59*x^4+55*x^3+2*x^2+68*x+12", "y^2=11*x^6+82*x^5+4*x^4+79*x^3+68*x^2+50*x+74", "y^2=62*x^6+53*x^5+72*x^4+44*x^3+81*x^2+41*x+63", "y^2=35*x^6+35*x^5+68*x^4+53*x^3+43*x^2+37*x+20", "y^2=54*x^6+67*x^4+63*x^3+85*x^2+61*x+38", "y^2=66*x^6+47*x^5+41*x^4+48*x^3+75*x+75", "y^2=22*x^6+28*x^5+60*x^4+27*x^3+21*x^2+45*x+58", "y^2=79*x^6+13*x^5+29*x^4+59*x^2+74*x+60", "y^2=17*x^6+76*x^5+53*x^4+11*x^3+53*x^2+76*x+17", "y^2=68*x^6+48*x^5+42*x^4+58*x^3+42*x^2+48*x+68", "y^2=56*x^6+14*x^5+12*x^4+9*x^3+40*x^2+35*x+46", "y^2=44*x^6+79*x^5+36*x^4+66*x^3+36*x^2+79*x+44", "y^2=81*x^6+41*x^5+43*x^4+24*x^3+67*x^2+87*x+74", "y^2=71*x^6+25*x^5+23*x^4+2*x^3+41*x^2+20*x+3", "y^2=41*x^6+40*x^5+71*x^4+9*x^3+9*x^2+24*x+78", "y^2=35*x^6+15*x^5+79*x^4+87*x^3+31*x^2+62*x+16", "y^2=20*x^6+25*x^5+36*x^4+86*x^3+76*x^2+67*x+82", "y^2=74*x^6+32*x^5+80*x^4+46*x^3+80*x^2+32*x+74", "y^2=85*x^6+81*x^5+30*x^4+39*x^3+59*x^2+30*x+18", "y^2=53*x^6+42*x^5+77*x^4+36*x^3+30*x^2+34*x+43", "y^2=66*x^6+25*x^5+7*x^4+73*x^3+7*x^2+25*x+66", "y^2=73*x^6+41*x^5+8*x^4+82*x^3+79*x^2+82*x+19", "y^2=39*x^6+10*x^5+48*x^4+52*x^3+74*x^2+79*x+36", "y^2=86*x^6+78*x^5+48*x^4+42*x^3+48*x^2+78*x+86", "y^2=22*x^6+54*x^5+87*x^4+76*x^3+87*x^2+54*x+22", "y^2=6*x^6+84*x^5+39*x^4+31*x^3+4*x^2+31*x+66", "y^2=33*x^6+80*x^5+49*x^4+77*x^3+32*x^2+76*x+83", "y^2=42*x^6+80*x^5+78*x^4+35*x^3+84*x^2+25*x+60", "y^2=5*x^6+56*x^5+32*x^4+35*x^3+32*x^2+56*x+5", "y^2=57*x^6+59*x^5+25*x^4+57*x^3+77*x^2+65*x+67", "y^2=59*x^6+74*x^5+33*x^4+45*x^3+25*x^2+12*x+54", "y^2=69*x^6+4*x^5+81*x^4+66*x^3+81*x^2+4*x+69", "y^2=87*x^6+58*x^5+39*x^4+42*x^3+9*x^2+3*x+6", "y^2=86*x^6+38*x^5+76*x^4+38*x^3+76*x^2+38*x+86", "y^2=4*x^6+23*x^5+42*x^4+11*x^3+2*x^2+46*x+63", "y^2=24*x^6+32*x^5+82*x^4+57*x^3+82*x^2+32*x+24", "y^2=77*x^6+10*x^5+57*x^4+56*x^3+23*x^2+x+30", "y^2=6*x^6+87*x^5+51*x^4+51*x^3+30*x^2+3*x+68", "y^2=68*x^6+53*x^5+29*x^4+39*x^2+40*x+7", "y^2=2*x^6+6*x^5+24*x^4+34*x^3+24*x^2+6*x+2", "y^2=70*x^6+83*x^5+36*x^4+4*x^3+79*x^2+59*x+23", "y^2=62*x^6+54*x^5+64*x^4+55*x^3+7*x^2+42*x+65", "y^2=10*x^6+63*x^5+18*x^4+15*x^3+14*x^2+38*x+70", "y^2=86*x^6+84*x^5+88*x^4+40*x^3+64*x^2+45*x+28", "y^2=50*x^6+58*x^5+26*x^4+68*x^3+70*x^2+18*x+24", "y^2=19*x^6+11*x^5+46*x^4+45*x^3+54*x^2+83*x+75", "y^2=84*x^6+76*x^5+17*x^4+36*x^3+17*x^2+76*x+84", "y^2=15*x^6+32*x^5+35*x^4+37*x^3+16*x^2+82*x+62", "y^2=65*x^6+73*x^5+15*x^4+11*x^3+15*x^2+73*x+65", "y^2=6*x^6+86*x^5+80*x^4+19*x^3+86*x^2+64*x+51", "y^2=27*x^6+44*x^5+81*x^4+54*x^3+27*x^2+33*x+15", "y^2=46*x^6+10*x^5+15*x^4+55*x^3+15*x^2+10*x+46", "y^2=75*x^6+5*x^5+74*x^4+43*x^3+51*x^2+74*x+5", "y^2=61*x^6+59*x^5+20*x^4+74*x^3+20*x^2+59*x+61", "y^2=17*x^6+42*x^5+28*x^4+77*x^3+88*x^2+73*x+74", "y^2=86*x^6+49*x^5+61*x^4+69*x^3+61*x^2+49*x+86", "y^2=31*x^6+8*x^5+73*x^4+30*x^3+52*x^2+42*x+12", "y^2=44*x^6+68*x^5+46*x^4+82*x^3+39*x^2+18*x+70", "y^2=32*x^6+46*x^5+6*x^4+23*x^3+74*x^2+66*x+81", "y^2=56*x^6+26*x^5+4*x^4+55*x^3+72*x^2+76*x+4", "y^2=17*x^6+50*x^5+4*x^4+84*x^3+36*x^2+44*x+58", "y^2=55*x^6+18*x^5+30*x^4+56*x^3+53*x^2+33*x+9", "y^2=10*x^6+79*x^5+48*x^4+61*x^3+26*x^2+56*x+26", "y^2=79*x^6+72*x^5+84*x^4+78*x^3+44*x^2+40*x+58", "y^2=77*x^6+9*x^5+78*x^4+19*x^3+75*x^2+17*x+65", "y^2=46*x^6+86*x^5+60*x^4+17*x^3+60*x^2+86*x+46", "y^2=14*x^6+48*x^5+54*x^4+56*x^3+73*x^2+75*x+43", "y^2=11*x^6+72*x^5+37*x^4+75*x^3+19*x^2+27*x+9", "y^2=22*x^6+40*x^5+67*x^4+34*x^3+57*x^2+40", "y^2=15*x^6+72*x^5+43*x^4+3*x^3+41*x^2+9*x+28", "y^2=62*x^6+54*x^5+84*x^4+26*x^3+84*x^2+54*x+62", "y^2=37*x^6+9*x^5+43*x^4+21*x^3+4*x^2+28*x+84", "y^2=8*x^6+80*x^5+4*x^4+x^3+51*x^2+61*x+38", "y^2=38*x^6+70*x^5+87*x^4+39*x^3+15*x^2+58*x+26", "y^2=73*x^6+65*x^5+42*x^4+76*x^3+9*x^2+66*x+69", "y^2=28*x^6+70*x^5+69*x^4+33*x^3+50*x^2+45*x+43", "y^2=14*x^6+41*x^5+6*x^4+77*x^3+8*x^2+64*x+51", "y^2=18*x^6+50*x^5+39*x^4+44*x^3+39*x^2+50*x+18", "y^2=84*x^6+7*x^5+63*x^4+41*x^3+55*x^2+39*x+86", "y^2=25*x^6+73*x^5+7*x^4+52*x^3+45*x^2+5*x+34", "y^2=12*x^6+86*x^5+19*x^4+35*x^3+39*x^2+77*x+59", "y^2=79*x^6+79*x^5+64*x^4+60*x^3+61*x^2+34*x+83", "y^2=77*x^6+27*x^5+3*x^4+19*x^3+41*x^2+70*x+49", "y^2=49*x^6+9*x^5+49*x^4+26*x^3+44*x^2+55*x+14", "y^2=80*x^6+73*x^5+26*x^4+45*x^3+77*x^2+29*x+18", "y^2=86*x^6+78*x^5+50*x^4+32*x^3+50*x^2+78*x+86", "y^2=12*x^6+38*x^5+39*x^4+30*x^3+32*x^2+65*x+75", "y^2=87*x^6+57*x^5+19*x^4+55*x^3+19*x^2+57*x+87", "y^2=31*x^6+22*x^5+64*x^4+64*x^3+76*x^2+34*x+35", "y^2=23*x^6+65*x^5+32*x^4+27*x^3+8*x^2+4*x+13", "y^2=16*x^6+85*x^5+46*x^4+40*x^3+46*x^2+85*x+16", "y^2=29*x^6+37*x^5+55*x^4+10*x^3+83*x^2+13*x+14", "y^2=69*x^6+45*x^5+2*x^4+16*x^3+48*x^2+13*x+68", "y^2=7*x^6+51*x^5+81*x^4+59*x^3+79*x^2+76*x+36", "y^2=23*x^6+41*x^5+24*x^4+86*x^3+24*x^2+41*x+23", "y^2=10*x^6+13*x^5+62*x^4+23*x^3+2*x^2+69*x+37", "y^2=45*x^6+40*x^5+67*x^4+41*x^3+73*x^2+3*x+82", "y^2=67*x^6+36*x^5+59*x^4+52*x^3+52*x^2+41*x+24", "y^2=48*x^6+74*x^5+67*x^4+63*x^3+5*x^2+41*x+64", "y^2=38*x^6+49*x^5+81*x^4+71*x^3+81*x^2+49*x+38", "y^2=31*x^6+47*x^5+84*x^4+33*x^3+6*x^2+75*x+19", "y^2=79*x^6+73*x^5+48*x^4+59*x^3+40*x^2+29*x+66", "y^2=53*x^6+86*x^5+47*x^4+60*x^3+47*x^2+86*x+53", "y^2=67*x^6+15*x^5+60*x^4+66*x^3+60*x^2+15*x+67", "y^2=19*x^6+30*x^5+36*x^4+44*x^3+81*x^2+55*x+53", "y^2=82*x^6+64*x^5+55*x^4+65*x^3+57*x^2+39*x+56", "y^2=x^6+66*x^5+77*x^4+84*x^3+77*x^2+66*x+1", "y^2=51*x^6+3*x^5+58*x^4+35*x^3+30*x^2+27*x+26", "y^2=44*x^6+18*x^5+85*x^4+67*x^3+85*x^2+18*x+44", "y^2=58*x^6+31*x^5+87*x^4+79*x^3+41*x^2+79*x+11", "y^2=11*x^6+10*x^5+12*x^3+87*x^2+13*x+62", "y^2=4*x^6+10*x^5+26*x^4+86*x^3+27*x^2+38*x+63", "y^2=62*x^6+73*x^5+33*x^4+2*x^2+64", "y^2=24*x^6+71*x^5+74*x^4+82*x^3+74*x^2+71*x+24", "y^2=25*x^6+3*x^5+45*x^4+2*x^3+26*x^2+32*x+35", "y^2=8*x^6+60*x^5+79*x^4+13*x^3+46*x^2+68*x+23", "y^2=50*x^6+87*x^5+60*x^4+66*x^3+60*x^2+87*x+50", "y^2=60*x^6+2*x^5+25*x^4+2*x^3+65*x^2+x+47", "y^2=26*x^6+85*x^5+75*x^4+56*x^3+6*x^2+18*x+26", "y^2=46*x^6+75*x^5+52*x^3+55*x^2+16*x+83", "y^2=60*x^6+12*x^5+37*x^4+72*x^3+37*x^2+12*x+60", "y^2=72*x^6+20*x^5+56*x^4+15*x^3+21*x^2+26*x+80", "y^2=52*x^6+12*x^5+42*x^4+5*x^3+42*x^2+12*x+52", "y^2=26*x^6+83*x^5+84*x^4+40*x^3+23*x^2+80*x+57", "y^2=64*x^6+83*x^5+65*x^4+59*x^3+13*x^2+9*x+35", "y^2=48*x^6+2*x^5+10*x^4+7*x^3+10*x^2+2*x+48", "y^2=24*x^6+15*x^5+32*x^4+51*x^3+31*x^2+65*x+54", "y^2=18*x^6+35*x^5+82*x^4+33*x^3+31*x^2+47*x+61", "y^2=48*x^6+45*x^5+6*x^4+68*x^3+34*x^2+74*x+72", "y^2=35*x^6+9*x^4+58*x^3+9*x^2+35", "y^2=33*x^6+59*x^5+12*x^4+74*x^3+17*x^2+12*x+76", "y^2=38*x^6+19*x^5+88*x^4+64*x^3+88*x^2+19*x+38", "y^2=50*x^6+11*x^5+58*x^4+83*x^3+42*x^2+74*x+45", "y^2=6*x^6+58*x^5+10*x^4+7*x^3+10*x^2+58*x+6", "y^2=79*x^6+56*x^5+68*x^4+3*x^3+4*x^2+58*x+27", "y^2=43*x^6+86*x^5+70*x^4+32*x^3+84*x^2+22*x+81", "y^2=20*x^6+35*x^5+57*x^4+19*x^3+75*x^2+71*x+31", "y^2=48*x^6+43*x^5+74*x^4+41*x^3+87*x^2+31*x+62", "y^2=35*x^6+29*x^5+6*x^4+49*x^3+4*x^2+75*x+85", "y^2=49*x^6+31*x^5+82*x^4+19*x^3+2*x^2+61*x+33", "y^2=43*x^6+32*x^5+44*x^4+44*x^2+32*x+43", "y^2=15*x^6+19*x^5+39*x^4+14*x^3+67*x^2+23*x+18", "y^2=51*x^6+21*x^5+27*x^4+87*x^3+40*x^2+83*x+70", "y^2=73*x^6+28*x^5+37*x^4+69*x^3+50*x^2+55*x+24", "y^2=14*x^6+64*x^4+28*x^3+36*x^2+42*x+50", "y^2=13*x^6+32*x^5+9*x^4+39*x^3+32*x^2+12*x+37", "y^2=85*x^6+73*x^5+55*x^4+81*x^3+55*x^2+73*x+85", "y^2=88*x^6+32*x^5+78*x^4+38*x^3+78*x^2+32*x+88", "y^2=79*x^6+34*x^5+53*x^4+74*x^3+52*x^2+25*x+72", "y^2=68*x^6+64*x^5+43*x^4+6*x^3+11*x^2+31*x+8", "y^2=46*x^6+19*x^5+32*x^4+16*x^3+32*x^2+19*x+46", "y^2=83*x^6+31*x^5+9*x^4+68*x^3+83*x^2+17*x+6", "y^2=22*x^6+49*x^5+75*x^4+63*x^3+75*x^2+49*x+22"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 8, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.131.1", "2.0.331.1"], "geometric_splitting_field": "4.0.1880176321.1", "geometric_splitting_polynomials": [[2500, 0, 231, 0, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 165, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 165, "label": "2.89.au_jt", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.131.1", "2.0.331.1"], "p": 89, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -20, 253, -1780, 7921], "poly_str": "1 -20 253 -1780 7921 ", "primitive_models": [], "q": 89, "real_poly": [1, -20, 75], "simple_distinct": ["1.89.ap", "1.89.af"], "simple_factors": ["1.89.apA", "1.89.afA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,F-V-3", "5,4*F+34", "5,11*F+34"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.1880176321.1", "splitting_polynomials": [[2500, 0, 231, 0, 1]], "twist_count": 4, "twists": [["2.89.ak_dz", "2.7921.ec_mut", 2], ["2.89.k_dz", "2.7921.ec_mut", 2], ["2.89.u_jt", "2.7921.ec_mut", 2]], "weak_equivalence_count": 8, "zfv_index": 100, "zfv_index_factorization": [[2, 2], [5, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 43361, "zfv_singular_count": 6, "zfv_singular_primes": ["2,F-V-3", "5,4*F+34", "5,11*F+34"]}