Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 79 x^{2} )( 1 + 5 x + 79 x^{2} )$ |
$1 + 5 x + 158 x^{2} + 395 x^{3} + 6241 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.590756304637$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $80$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6800$ | $40800000$ | $242565819200$ | $1516419964800000$ | $9468613872647270000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $85$ | $6533$ | $491980$ | $38932393$ | $3077166175$ | $243088304078$ | $19203901001545$ | $1517108782793713$ | $119851596359466340$ | $9468276082884522173$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 80 curves (of which all are hyperelliptic):
- $y^2=51 x^6+37 x^5+73 x^4+54 x^3+56 x^2+59 x+50$
- $y^2=29 x^6+78 x^5+6 x^4+25 x^3+38 x^2+74 x+18$
- $y^2=25 x^6+77 x^5+17 x^4+41 x^3+55 x^2+11 x+44$
- $y^2=28 x^6+29 x^5+27 x^4+75 x^3+2 x^2+45 x+3$
- $y^2=77 x^6+67 x^5+21 x^4+33 x^3+26 x^2+9 x+44$
- $y^2=78 x^6+72 x^5+60 x^4+77 x^3+10 x^2+42 x+1$
- $y^2=33 x^6+77 x^5+61 x^4+12 x^3+63 x^2+70 x+12$
- $y^2=30 x^6+66 x^5+70 x^4+49 x^3+78 x^2+x+26$
- $y^2=5 x^6+32 x^5+70 x^4+14 x^3+63 x^2+48 x+66$
- $y^2=49 x^6+34 x^5+13 x^4+34 x^3+10 x^2+23 x+19$
- $y^2=70 x^5+13 x^4+12 x^3+2 x^2+40 x+30$
- $y^2=4 x^6+40 x^5+16 x^4+28 x^3+61 x^2+20 x+65$
- $y^2=44 x^6+25 x^5+24 x^4+57 x^3+64 x^2+28 x$
- $y^2=40 x^6+51 x^5+33 x^4+45 x^3+70 x^2+18 x+68$
- $y^2=72 x^6+58 x^5+50 x^4+7 x^3+16 x^2+35 x+59$
- $y^2=45 x^6+54 x^5+43 x^4+36 x^3+5 x^2+43 x+10$
- $y^2=73 x^6+65 x^5+40 x^4+20 x^3+17 x^2+30 x+60$
- $y^2=69 x^6+73 x^5+15 x^4+37 x^3+60 x^2+69 x+69$
- $y^2=12 x^6+13 x^5+59 x^4+12 x^3+7 x^2+4 x+62$
- $y^2=6 x^6+40 x^5+38 x^4+67 x^3+40 x^2+64 x+15$
- and 60 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$The isogeny class factors as 1.79.a $\times$ 1.79.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{79^{2}}$ is 1.6241.fd $\times$ 1.6241.gc. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.79.af_gc | $2$ | (not in LMFDB) |