# Curves in abelian variety isogeny class 2.79.f_gc, downloaded from the LMFDB on 14 October 2025. y^2=51*x^6+37*x^5+73*x^4+54*x^3+56*x^2+59*x+50 y^2=29*x^6+78*x^5+6*x^4+25*x^3+38*x^2+74*x+18 y^2=25*x^6+77*x^5+17*x^4+41*x^3+55*x^2+11*x+44 y^2=28*x^6+29*x^5+27*x^4+75*x^3+2*x^2+45*x+3 y^2=77*x^6+67*x^5+21*x^4+33*x^3+26*x^2+9*x+44 y^2=78*x^6+72*x^5+60*x^4+77*x^3+10*x^2+42*x+1 y^2=33*x^6+77*x^5+61*x^4+12*x^3+63*x^2+70*x+12 y^2=30*x^6+66*x^5+70*x^4+49*x^3+78*x^2+x+26 y^2=5*x^6+32*x^5+70*x^4+14*x^3+63*x^2+48*x+66 y^2=49*x^6+34*x^5+13*x^4+34*x^3+10*x^2+23*x+19 y^2=70*x^5+13*x^4+12*x^3+2*x^2+40*x+30 y^2=4*x^6+40*x^5+16*x^4+28*x^3+61*x^2+20*x+65 y^2=44*x^6+25*x^5+24*x^4+57*x^3+64*x^2+28*x y^2=40*x^6+51*x^5+33*x^4+45*x^3+70*x^2+18*x+68 y^2=72*x^6+58*x^5+50*x^4+7*x^3+16*x^2+35*x+59 y^2=45*x^6+54*x^5+43*x^4+36*x^3+5*x^2+43*x+10 y^2=73*x^6+65*x^5+40*x^4+20*x^3+17*x^2+30*x+60 y^2=69*x^6+73*x^5+15*x^4+37*x^3+60*x^2+69*x+69 y^2=12*x^6+13*x^5+59*x^4+12*x^3+7*x^2+4*x+62 y^2=6*x^6+40*x^5+38*x^4+67*x^3+40*x^2+64*x+15 y^2=10*x^6+34*x^5+43*x^4+78*x^3+30*x^2+18*x+19 y^2=48*x^6+4*x^5+31*x^4+37*x^3+20*x^2+17*x+71 y^2=70*x^6+56*x^5+21*x^4+42*x^3+59*x^2+12*x+18 y^2=63*x^6+78*x^5+66*x^4+31*x^3+36*x^2+13 y^2=61*x^6+63*x^5+18*x^4+46*x^3+67*x^2+52*x+9 y^2=51*x^6+78*x^5+74*x^4+53*x^3+9*x^2+27*x+12 y^2=18*x^6+15*x^5+46*x^4+46*x^3+22*x^2+78*x+30 y^2=19*x^6+33*x^5+62*x^4+30*x^3+41*x^2+24*x+70 y^2=36*x^6+45*x^5+3*x^4+64*x^3+51*x^2+37*x+17 y^2=16*x^6+42*x^5+30*x^4+33*x^3+64*x^2+40*x+52 y^2=55*x^6+64*x^5+16*x^4+37*x^3+20*x^2+29*x+32 y^2=13*x^6+54*x^5+73*x^4+57*x^3+2*x^2+68*x+36 y^2=62*x^6+30*x^5+39*x^4+33*x^3+12*x^2+22*x+56 y^2=38*x^6+70*x^5+19*x^4+63*x^3+61*x^2+30*x+64 y^2=32*x^6+x^5+38*x^3+63*x^2+53*x+55 y^2=45*x^6+2*x^5+37*x^4+77*x^3+33*x^2+50*x y^2=22*x^6+36*x^5+42*x^4+14*x^3+69*x^2+16*x+47 y^2=71*x^6+24*x^5+32*x^4+51*x^3+33*x^2+9*x+66 y^2=72*x^6+14*x^5+47*x^4+6*x^3+36*x^2+74*x+58 y^2=13*x^6+63*x^5+56*x^4+37*x^3+37*x^2+71 y^2=78*x^6+61*x^5+14*x^4+17*x^3+54*x^2+12*x+54 y^2=53*x^6+20*x^5+23*x^4+10*x^3+52*x^2+74*x+71 y^2=39*x^6+2*x^5+61*x^4+43*x^3+24*x^2+32*x+34 y^2=10*x^6+11*x^5+49*x^4+57*x^3+43*x^2+70*x y^2=57*x^6+36*x^5+34*x^4+45*x^3+52*x^2+15*x+36 y^2=47*x^6+68*x^5+41*x^4+59*x^3+60*x^2+18*x+65 y^2=72*x^6+14*x^5+33*x^4+37*x^3+17*x^2+57*x+73 y^2=x^6+65*x^5+24*x^4+70*x^2+28*x+53 y^2=44*x^6+9*x^5+18*x^4+74*x^3+53*x^2+52*x+44 y^2=44*x^6+35*x^5+67*x^4+38*x^3+29*x^2+30*x+44 y^2=28*x^6+21*x^5+18*x^4+65*x^3+2*x^2+9*x+72 y^2=29*x^5+34*x^4+73*x^3+6*x^2+65*x+66 y^2=24*x^6+6*x^5+30*x^4+58*x^3+48*x^2+38*x+54 y^2=60*x^6+53*x^5+78*x^4+66*x^3+52*x^2+15*x+53 y^2=66*x^6+73*x^5+49*x^4+29*x^3+24*x^2+30*x+31 y^2=19*x^6+46*x^5+23*x^4+43*x^3+6*x^2+66*x+46 y^2=67*x^6+50*x^5+21*x^4+58*x^3+55*x^2+76*x+35 y^2=51*x^6+61*x^5+41*x^4+52*x^3+42*x^2+x+45 y^2=28*x^6+31*x^5+53*x^4+68*x^3+62*x^2+14*x+77 y^2=63*x^6+76*x^5+18*x^4+14*x^3+2*x^2+72*x+25 y^2=44*x^6+51*x^5+73*x^4+41*x^3+27*x^2+76*x+52 y^2=33*x^6+47*x^5+40*x^4+38*x^3+30*x^2+19*x+59 y^2=46*x^6+33*x^5+15*x^4+27*x^3+37*x^2+12*x+32 y^2=40*x^5+76*x^4+29*x^3+4*x^2+45*x+17 y^2=70*x^6+42*x^5+45*x^4+71*x^3+77*x^2+13*x+11 y^2=6*x^5+72*x^4+67*x^3+67*x^2+57*x+20 y^2=22*x^6+19*x^5+34*x^4+25*x^3+37*x^2+58*x+38 y^2=63*x^6+51*x^5+70*x^4+76*x^3+15*x^2+11*x+52 y^2=42*x^6+59*x^5+12*x^4+70*x^3+61*x^2+60*x+43 y^2=65*x^6+34*x^5+x^4+48*x^3+56*x+64 y^2=47*x^6+31*x^5+25*x^4+64*x^3+49*x^2+67*x+17 y^2=23*x^6+71*x^5+3*x^4+73*x^3+51*x^2+27*x+23 y^2=31*x^6+69*x^5+69*x^4+7*x^3+64*x^2+40*x+36 y^2=3*x^6+55*x^5+38*x^4+24*x^3+74*x^2+16*x+64 y^2=60*x^6+64*x^5+74*x^4+31*x^3+13*x^2+38*x+3 y^2=x^6+74*x^5+56*x^4+8*x^3+78*x^2+9*x+54 y^2=20*x^6+12*x^5+60*x^4+22*x^3+26*x^2+12*x+24 y^2=3*x^6+66*x^5+77*x^4+21*x^3+30*x^2+19*x+31 y^2=52*x^6+77*x^5+13*x^4+38*x^3+56*x^2+44*x+36 y^2=4*x^6+3*x^5+5*x^3+69*x^2+77*x+50