Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 95 x^{2} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.362759063053$, $\pm0.637240936947$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{51}, \sqrt{-241})\) |
Galois group: | $C_2^2$ |
Jacobians: | $154$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5425$ | $29430625$ | $151333564900$ | $806552900015625$ | $4297625828085774625$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $74$ | $5520$ | $389018$ | $28401508$ | $2073071594$ | $151332903510$ | $11047398519098$ | $806460200153668$ | $58871586708267914$ | $4297625826467991600$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 154 curves (of which all are hyperelliptic):
- $y^2=68 x^6+47 x^5+47 x^4+9 x^3+19 x^2+24 x+57$
- $y^2=48 x^6+16 x^5+16 x^4+45 x^3+22 x^2+47 x+66$
- $y^2=61 x^6+67 x^5+51 x^4+51 x^3+19 x^2+58 x+12$
- $y^2=13 x^6+43 x^5+36 x^4+36 x^3+22 x^2+71 x+60$
- $y^2=47 x^6+31 x^5+53 x^4+13 x^3+24 x^2+48 x+7$
- $y^2=16 x^6+9 x^5+46 x^4+65 x^3+47 x^2+21 x+35$
- $y^2=9 x^6+12 x^5+71 x^4+17 x^3+49 x^2+20 x+4$
- $y^2=45 x^6+60 x^5+63 x^4+12 x^3+26 x^2+27 x+20$
- $y^2=45 x^6+64 x^5+42 x^4+40 x^3+13 x^2+26 x+32$
- $y^2=6 x^6+28 x^5+64 x^4+54 x^3+65 x^2+57 x+14$
- $y^2=60 x^6+41 x^5+43 x^4+69 x^3+71 x^2+19 x+38$
- $y^2=8 x^6+59 x^5+69 x^4+53 x^3+63 x^2+22 x+44$
- $y^2=4 x^6+x^5+27 x^4+19 x^3+24 x^2+24 x+63$
- $y^2=20 x^6+5 x^5+62 x^4+22 x^3+47 x^2+47 x+23$
- $y^2=2 x^6+39 x^5+59 x^4+49 x^3+23 x^2+33 x+72$
- $y^2=10 x^6+49 x^5+3 x^4+26 x^3+42 x^2+19 x+68$
- $y^2=31 x^6+21 x^5+54 x^4+67 x^3+29 x^2+48 x+63$
- $y^2=9 x^6+32 x^5+51 x^4+43 x^3+72 x^2+21 x+23$
- $y^2=55 x^6+9 x^5+21 x^4+25 x^3+54 x^2+2 x+45$
- $y^2=56 x^6+45 x^5+32 x^4+52 x^3+51 x^2+10 x+6$
- and 134 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{51}, \sqrt{-241})\). |
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.dr 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-12291}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.a_adr | $4$ | (not in LMFDB) |