Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 5 x + 59 x^{2} )( 1 + 59 x^{2} )$ |
$1 - 5 x + 118 x^{2} - 295 x^{3} + 3481 x^{4}$ | |
Frobenius angles: | $\pm0.394476720982$, $\pm0.5$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $72$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3300$ | $12870000$ | $42337033200$ | $146725670520000$ | $511078667138407500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $55$ | $3693$ | $206140$ | $12108713$ | $714871025$ | $42180777558$ | $2488653793835$ | $146830434758353$ | $8662995789366820$ | $511116753322112973$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=42 x^6+3 x^5+57 x^4+30 x^3+41 x+53$
- $y^2=18 x^6+49 x^5+58 x^4+55 x^3+40 x^2+51 x+51$
- $y^2=36 x^6+53 x^5+x^4+19 x^3+44 x^2+24 x+46$
- $y^2=2 x^6+50 x^5+3 x^4+54 x^3+44 x^2+26 x+15$
- $y^2=20 x^6+48 x^5+11 x^4+13 x^3+42 x^2+49 x+8$
- $y^2=40 x^6+49 x^5+30 x^4+45 x^3+5 x^2+8 x+51$
- $y^2=50 x^6+25 x^5+9 x^4+5 x^3+25 x^2+16 x+57$
- $y^2=9 x^6+57 x^5+48 x^4+10 x^3+41 x^2+7 x+51$
- $y^2=44 x^6+17 x^5+50 x^4+37 x^3+57 x^2+3 x+2$
- $y^2=19 x^6+x^5+6 x^4+30 x^3+23 x^2+28 x+56$
- $y^2=32 x^6+40 x^5+13 x^4+15 x^3+23 x^2+4 x+26$
- $y^2=54 x^6+9 x^5+42 x^4+32 x^3+11 x^2+37 x+27$
- $y^2=13 x^6+37 x^5+36 x^4+42 x^3+35 x^2+32 x+55$
- $y^2=4 x^6+34 x^5+9 x^4+x^3+38 x^2+40 x+40$
- $y^2=54 x^6+42 x^5+4 x^4+28 x^3+22 x^2+24 x+35$
- $y^2=43 x^6+12 x^5+52 x^4+46 x^3+43 x^2+36 x+29$
- $y^2=4 x^6+14 x^5+28 x^4+18 x^3+30 x^2+14 x+18$
- $y^2=38 x^6+56 x^5+49 x^4+52 x^3+5 x^2+48 x+19$
- $y^2=54 x^6+4 x^5+5 x^4+x^3+31 x^2+47 x+44$
- $y^2=26 x^6+2 x^5+30 x^4+26 x^3+42 x^2+18 x+14$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$The isogeny class factors as 1.59.af $\times$ 1.59.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.dp $\times$ 1.3481.eo. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.f_eo | $2$ | (not in LMFDB) |