Properties

Label 2.59.af_eo
Base field $\F_{59}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $( 1 - 5 x + 59 x^{2} )( 1 + 59 x^{2} )$
  $1 - 5 x + 118 x^{2} - 295 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.394476720982$, $\pm0.5$
Angle rank:  $1$ (numerical)
Jacobians:  $72$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3300$ $12870000$ $42337033200$ $146725670520000$ $511078667138407500$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $55$ $3693$ $206140$ $12108713$ $714871025$ $42180777558$ $2488653793835$ $146830434758353$ $8662995789366820$ $511116753322112973$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59^{2}}$.

Endomorphism algebra over $\F_{59}$
The isogeny class factors as 1.59.af $\times$ 1.59.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{59}$
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.dp $\times$ 1.3481.eo. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.f_eo$2$(not in LMFDB)