-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 3300, 'abvar_counts': [3300, 12870000, 42337033200, 146725670520000, 511078667138407500, 1779207706762405920000, 6193391959230398912084700, 21559176989201304033815520000, 75047496300310112990246665090800, 261240335515563201149618953293750000], 'abvar_counts_str': '3300 12870000 42337033200 146725670520000 511078667138407500 1779207706762405920000 6193391959230398912084700 21559176989201304033815520000 75047496300310112990246665090800 261240335515563201149618953293750000 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.394476720982056, 0.5], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 55, 'curve_counts': [55, 3693, 206140, 12108713, 714871025, 42180777558, 2488653793835, 146830434758353, 8662995789366820, 511116753322112973], 'curve_counts_str': '55 3693 206140 12108713 714871025 42180777558 2488653793835 146830434758353 8662995789366820 511116753322112973 ', 'curves': ['y^2=42*x^6+3*x^5+57*x^4+30*x^3+41*x+53', 'y^2=18*x^6+49*x^5+58*x^4+55*x^3+40*x^2+51*x+51', 'y^2=36*x^6+53*x^5+x^4+19*x^3+44*x^2+24*x+46', 'y^2=2*x^6+50*x^5+3*x^4+54*x^3+44*x^2+26*x+15', 'y^2=20*x^6+48*x^5+11*x^4+13*x^3+42*x^2+49*x+8', 'y^2=40*x^6+49*x^5+30*x^4+45*x^3+5*x^2+8*x+51', 'y^2=50*x^6+25*x^5+9*x^4+5*x^3+25*x^2+16*x+57', 'y^2=9*x^6+57*x^5+48*x^4+10*x^3+41*x^2+7*x+51', 'y^2=44*x^6+17*x^5+50*x^4+37*x^3+57*x^2+3*x+2', 'y^2=19*x^6+x^5+6*x^4+30*x^3+23*x^2+28*x+56', 'y^2=32*x^6+40*x^5+13*x^4+15*x^3+23*x^2+4*x+26', 'y^2=54*x^6+9*x^5+42*x^4+32*x^3+11*x^2+37*x+27', 'y^2=13*x^6+37*x^5+36*x^4+42*x^3+35*x^2+32*x+55', 'y^2=4*x^6+34*x^5+9*x^4+x^3+38*x^2+40*x+40', 'y^2=54*x^6+42*x^5+4*x^4+28*x^3+22*x^2+24*x+35', 'y^2=43*x^6+12*x^5+52*x^4+46*x^3+43*x^2+36*x+29', 'y^2=4*x^6+14*x^5+28*x^4+18*x^3+30*x^2+14*x+18', 'y^2=38*x^6+56*x^5+49*x^4+52*x^3+5*x^2+48*x+19', 'y^2=54*x^6+4*x^5+5*x^4+x^3+31*x^2+47*x+44', 'y^2=26*x^6+2*x^5+30*x^4+26*x^3+42*x^2+18*x+14', 'y^2=13*x^6+32*x^5+29*x^4+21*x^3+19*x^2+16*x+48', 'y^2=48*x^6+23*x^5+x^4+49*x^3+30*x^2+22*x+1', 'y^2=39*x^6+54*x^5+58*x^4+2*x^3+24*x^2+52*x+15', 'y^2=35*x^6+31*x^5+34*x^4+21*x^3+2*x^2+35*x+54', 'y^2=14*x^6+41*x^5+47*x^4+52*x^3+31*x^2+47*x+15', 'y^2=16*x^6+15*x^5+27*x^4+55*x^3+50*x^2+12*x+15', 'y^2=14*x^6+45*x^5+54*x^4+48*x^3+17*x^2+47*x+16', 'y^2=8*x^6+22*x^5+23*x^4+6*x^3+55*x^2+45*x+11', 'y^2=27*x^6+10*x^5+15*x^4+53*x^3+49*x^2+20*x+31', 'y^2=41*x^6+14*x^5+13*x^4+37*x^3+45*x^2+44*x+26', 'y^2=26*x^6+10*x^5+19*x^3+28*x^2+45*x+35', 'y^2=4*x^6+x^5+49*x^4+26*x^3+12*x^2+3*x+42', 'y^2=42*x^6+48*x^5+17*x^4+35*x^3+57*x^2+33*x+32', 'y^2=15*x^6+38*x^5+11*x^4+23*x^3+44*x^2+18*x+37', 'y^2=12*x^6+18*x^5+51*x^4+53*x^3+47*x^2+42*x+8', 'y^2=19*x^6+37*x^5+27*x^4+34*x^3+14*x^2+x+17', 'y^2=52*x^6+54*x^5+46*x^4+12*x^3+50*x^2+19*x+46', 'y^2=42*x^6+54*x^5+2*x^4+4*x^3+16*x^2+19*x+22', 'y^2=49*x^6+31*x^5+5*x^4+54*x^3+17*x^2+26*x+20', 'y^2=41*x^6+9*x^5+16*x^4+17*x^2+47*x+54', 'y^2=54*x^6+43*x^5+2*x^4+50*x^3+55*x^2+13*x+22', 'y^2=26*x^6+21*x^5+31*x^4+38*x^3+46*x^2+14*x+5', 'y^2=14*x^6+38*x^5+53*x^4+2*x^3+42*x^2+48*x+12', 'y^2=55*x^6+49*x^5+50*x^4+35*x^3+2*x^2+34*x+54', 'y^2=8*x^6+29*x^5+49*x^4+7*x^3+41*x^2+46*x+11', 'y^2=x^6+37*x^5+51*x^4+13*x^3+15*x^2+56*x+32', 'y^2=x^6+6*x^5+16*x^4+44*x^3+3*x+53', 'y^2=24*x^6+43*x^5+36*x^4+29*x^3+41*x^2+27*x+41', 'y^2=11*x^6+47*x^5+9*x^4+57*x^3+28*x^2+51*x+30', 'y^2=47*x^6+40*x^5+3*x^4+3*x^3+44*x^2+52*x+51', 'y^2=45*x^6+44*x^5+45*x^4+9*x^3+49*x^2+23*x+45', 'y^2=40*x^6+50*x^5+19*x^4+10*x^3+x^2+8*x+20', 'y^2=43*x^6+55*x^5+55*x^4+7*x^3+50*x^2+43*x+28', 'y^2=34*x^6+25*x^5+50*x^4+52*x^3+30*x^2+55*x+9', 'y^2=51*x^6+23*x^5+33*x^4+6*x^3+49*x^2+38*x+51', 'y^2=56*x^6+29*x^5+5*x^4+22*x^3+13*x^2+14*x+2', 'y^2=6*x^6+14*x^5+20*x^4+21*x^3+36*x^2+45*x+39', 'y^2=21*x^6+47*x^5+14*x^4+12*x^3+48*x^2+55*x+46', 'y^2=7*x^6+55*x^5+2*x^4+48*x^3+6*x^2+56*x+14', 'y^2=35*x^6+40*x^4+5*x^3+12*x^2+57*x+28', 'y^2=x^6+29*x^5+38*x^4+14*x^3+49*x^2+14', 'y^2=57*x^6+48*x^5+40*x^4+10*x^3+20*x^2+30', 'y^2=29*x^6+19*x^5+3*x^4+57*x^3+4*x^2+30*x+24', 'y^2=38*x^6+22*x^5+5*x^4+52*x^3+33*x^2+35*x+51', 'y^2=10*x^6+31*x^5+36*x^4+27*x^3+52*x^2+57*x+57', 'y^2=7*x^6+41*x^5+5*x^4+24*x^3+18*x^2+27*x+20', 'y^2=16*x^6+3*x^5+43*x^4+x^3+29*x^2+58*x+23', 'y^2=58*x^6+29*x^5+19*x^4+50*x^3+41*x^2+16*x', 'y^2=29*x^6+47*x^5+47*x^4+40*x^3+18*x^2+34*x', 'y^2=11*x^6+51*x^5+52*x^4+7*x^3+26*x^2+45*x+47', 'y^2=34*x^6+16*x^5+x^4+43*x^3+26*x^2+44*x', 'y^2=35*x^6+24*x^5+43*x^4+8*x^3+39*x^2+34*x+53'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 8, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 3, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['1T1', '2T1'], 'geometric_number_fields': ['1.1.1.1', '2.0.211.1'], 'geometric_splitting_field': '2.0.211.1', 'geometric_splitting_polynomials': [[53, -1, 1]], 'group_structure_count': 4, 'has_geom_ss_factor': True, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 72, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 72, 'label': '2.59.af_eo', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 4, 'max_twist_degree': 2, 'newton_coelevation': 1, 'newton_elevation': 1, 'number_fields': ['2.0.211.1', '2.0.59.1'], 'p': 59, 'p_rank': 1, 'p_rank_deficit': 1, 'poly': [1, -5, 118, -295, 3481], 'poly_str': '1 -5 118 -295 3481 ', 'primitive_models': [], 'q': 59, 'real_poly': [1, -5], 'simple_distinct': ['1.59.af', '1.59.a'], 'simple_factors': ['1.59.afA', '1.59.aA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['5,3*F-V+4', '5,8*V-22', '2,9*F-7'], 'slopes': ['0A', '1/2A', '1/2B', '1A'], 'splitting_field': '4.0.154977601.1', 'splitting_polynomials': [[1444, 0, 135, 0, 1]], 'twist_count': 2, 'twists': [['2.59.f_eo', '2.3481.id_banw', 2]], 'weak_equivalence_count': 8, 'zfv_index': 50, 'zfv_index_factorization': [[2, 1], [5, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 49796, 'zfv_singular_count': 6, 'zfv_singular_primes': ['5,3*F-V+4', '5,8*V-22', '2,9*F-7']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 52522
{'base_label': '2.59.af_eo', 'extension_degree': 1, 'extension_label': '1.59.af', 'multiplicity': 1}
-
id: 52523
{'base_label': '2.59.af_eo', 'extension_degree': 1, 'extension_label': '1.59.a', 'multiplicity': 1}
-
id: 52524
{'base_label': '2.59.af_eo', 'extension_degree': 2, 'extension_label': '1.3481.dp', 'multiplicity': 1}
-
id: 52525
{'base_label': '2.59.af_eo', 'extension_degree': 2, 'extension_label': '1.3481.eo', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.211.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.59.af', 'galois_group': '2T1', 'places': [['56', '1'], ['2', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0'], 'center': '2.0.59.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.59.a', 'galois_group': '2T1', 'places': [['29', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.211.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.3481.dp', 'galois_group': '2T1', 'places': [['56', '1'], ['2', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['1/2'], 'center': '1.1.1.1', 'center_dim': 1, 'divalg_dim': 4, 'extension_label': '1.3481.eo', 'galois_group': '1T1', 'places': [['0']]}