L(s) = 1 | + 3-s + 3·7-s − 2·9-s − 4·16-s + 3·21-s + 6·25-s − 5·27-s + 2·37-s + 6·41-s − 6·47-s − 4·48-s + 2·49-s − 6·63-s + 24·67-s + 6·75-s + 81-s + 18·83-s − 6·101-s + 2·111-s − 12·112-s − 13·121-s + 6·123-s + 127-s + 131-s + 137-s + 139-s − 6·141-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.13·7-s − 2/3·9-s − 16-s + 0.654·21-s + 6/5·25-s − 0.962·27-s + 0.328·37-s + 0.937·41-s − 0.875·47-s − 0.577·48-s + 2/7·49-s − 0.755·63-s + 2.93·67-s + 0.692·75-s + 1/9·81-s + 1.97·83-s − 0.597·101-s + 0.189·111-s − 1.13·112-s − 1.18·121-s + 0.541·123-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.505·141-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.437519000\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.437519000\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.321065783179474939822435933353, −8.034529495569077493206218300476, −7.72950229904517849934702995434, −7.04683974805323497879667125600, −6.65333760870998568997782491095, −6.22951641259898399979281636675, −5.43480082495478886410801239456, −5.21206379836143543298628972960, −4.62473571555122321221696594487, −4.18965212376000894080896766771, −3.51615935958112742806595307097, −2.91126118061878046639106846758, −2.31756176087787042795960850559, −1.83051329436985908685428469916, −0.77320653319505038546518008089,
0.77320653319505038546518008089, 1.83051329436985908685428469916, 2.31756176087787042795960850559, 2.91126118061878046639106846758, 3.51615935958112742806595307097, 4.18965212376000894080896766771, 4.62473571555122321221696594487, 5.21206379836143543298628972960, 5.43480082495478886410801239456, 6.22951641259898399979281636675, 6.65333760870998568997782491095, 7.04683974805323497879667125600, 7.72950229904517849934702995434, 8.034529495569077493206218300476, 8.321065783179474939822435933353