| L(s) = 1 | + 4·5-s + 6·25-s + 4·29-s − 16·43-s + 16·47-s + 2·49-s + 4·53-s − 16·67-s − 4·73-s − 4·97-s − 12·101-s + 10·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s + 16·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 6·169-s + 173-s + 179-s + 181-s + ⋯ |
| L(s) = 1 | + 1.78·5-s + 6/5·25-s + 0.742·29-s − 2.43·43-s + 2.33·47-s + 2/7·49-s + 0.549·53-s − 1.95·67-s − 0.468·73-s − 0.406·97-s − 1.19·101-s + 0.909·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.32·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.461·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 41472 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41472 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.787257678\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.787257678\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20112785355525978021686420612, −9.793874630729459108321058730438, −9.318884771790808129088719714626, −8.728225827780637437596320661999, −8.397481846764847666787406523046, −7.49657678256045028484353447998, −7.01544420731205789665335181084, −6.32380917769720974578055853068, −5.94195423883222522173962982434, −5.39251352388973439705582823019, −4.80906308846480705289436249292, −3.98581372221839079065980647652, −2.99136609483359382134054205460, −2.28090584644293007601298990383, −1.43579895495645945319504330384,
1.43579895495645945319504330384, 2.28090584644293007601298990383, 2.99136609483359382134054205460, 3.98581372221839079065980647652, 4.80906308846480705289436249292, 5.39251352388973439705582823019, 5.94195423883222522173962982434, 6.32380917769720974578055853068, 7.01544420731205789665335181084, 7.49657678256045028484353447998, 8.397481846764847666787406523046, 8.728225827780637437596320661999, 9.318884771790808129088719714626, 9.793874630729459108321058730438, 10.20112785355525978021686420612